Abstract
In this article, we address the numerical solution of non-smooth eigenvalue problems coming from continuum mechanics. These problems have applications in plasticity theory, since the smallest eigenvalue of the non-smooth operators under consideration appears in the estimation of the cut-off time of some Bingham flows. Three vector-valued eigenvalue problems are investigated. The case of divergence free functions is included. Piecewise linear finite elements are used for the discretization of the eigenfunctions. An augmented Lagrangian method is proposed for the solution of the associated non-convex optimization problem. Numerical solutions are presented for the first eigenpair of these problems and convergence orders are discussed.
Similar content being viewed by others
References
Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21(4), 337–344 (1984)
Bellettini, G., Caselles, V., Novaga, M.: Explicit solutions of the eigenvalue problem −div\((\frac{Du}{|Du|})=u\) in ℝ2. SIAM J. Math. Anal. 36(4), 1095–1129 (2005)
Burger, M., Osher, S., Xu, J., Gilboa, G.: Nonlinear inverse scale space methods for image restoration. In: Lecture Notes in Computer Science, vol. 3752, pp. 25–36. Springer, Berlin (2005)
Caboussat, A., Glowinski, R., Pons, V.: An augmented Lagrangian approach to the numerical solution of a non-smooth eigenvalue problem. J. Numer. Math. 17(1), 3–26 (2009)
Carlier, G., Comte, M., Peyré, G.: Approximation of maximal Cheeger sets by projection. ESAIM: Math. Model. Numer. Anal. 43(1), 139–150 (2009)
Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31, 308–340 (1961)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)
Chan, T., Shen, J.: Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia (2005)
Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)
Dean, E.J., Glowinski, R.: Operator-splitting methods for the simulation of Bingham visco-plastic flow. Chin. Ann. Math. 23B(2), 187–204 (2002)
Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C.R. Acad. Sci. Paris, Sér. I 336, 779–784 (2003)
Dean, E.J., Glowinski, R.: An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. Electron. Trans. Numer. Anal. 22, 71–96 (2006)
Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comput. Meth. Appl. Mech. Eng. 195, 1344–1386 (2006)
Dean, E.J., Glowinski, R., Guidoboni, G.: On the numerical simulation of Bingham visco-plastic flow: old and new results. J. Non Newtonian Fluid Mech. 142, 36–62 (2007)
Dibos, F., Koepfler, G.: Global total variation minimization. SIAM J. Numer. Anal. 37(2), 646–664 (2000)
Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)
Feng, X., Neilan, M., Prohl, A.: Error analysis of finite element approximations of the inverse mean curvature flow arising from the general relativity. Numer. Math. 108, 93–119 (2007)
Franca, L.P., Frey, S.L.: Stabilized finite element method: II. The incompressible Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng. 99, 209–233 (1992)
Franca, L.P., Frey, S.L., Hughes, T.J.R.: Stabilized finite element methods: I. Application to the advective-diffusive model. Comput. Meth. Appl. Mech. Eng. 95, 253–276 (1992)
Franca, L.P., Hughes, T.J.R.: Convergence analyses of Galerkin least-squares methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-Stokes equations. Comput. Meth. Appl. Mech. Eng. 105, 285–298 (1993)
Glowinski, R.: In: P.G. Ciarlet, J.L. Lions (eds.), Finite Element Method for Incompressible Viscous Flow. Handbook of Numerical Analysis, vol. IX, pp. 3–1176. Elsevier, Amsterdam (2003)
Glowinski, R., Le Tallec, P.: Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)
Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical Analysis of Variational Inequalities. North Holland, Amsterdam (1981)
Glowinski, R., Dean, E., Guidoboni, G., Juarez, L.H., Pan, T.W.: Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two- dimensional Monge-Ampère equation. Jpn. J. Ind. Appl. Math. 25, 1–63 (2008)
He, J.W., Glowinski, R.: Steady Bingham fluid flow in cylindrical pipes: a time dependent approach to the iterative solution. Numer. Linear Algebra Appl. 7, 381–428 (2000)
Huisken, G., Ilmanen, T.: A note on the inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59, 353–437 (2001)
Kärkkäinen, T., Kunish, K., Majava, K.: Denoising of smooth images using L 1-fitting. Computing 74(4), 353–376 (2005)
Kawohl, B.: Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete Contin. Dyn. Syst. 6(3), 683–690 (2000)
Kawohl, B., Fridman, V.: Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carolina 44, 659–667 (2003)
Kawohl, B., Schuricht, F.: Dirichlet problems for the 1-Laplace operator including the eigenvalue problem. Commun. Contemp. Math. 9(4), 515–543 (2007)
Marcellini, P., Miller, K.: Elliptic versus parabolic regularization for the equation of prescribed mean curvature. J. Differ. Equ. 137, 1–53 (1997)
Maronnier, V., Picasso, M., Rappaz, J.: Numerical simulation of free surface flows. J. Comput. Phys. 155, 439–455 (1999)
Picasso, M., Rappaz, J.: Stability of time-splitting schemes for the Stokes problem with stabilized finite elements. Numer. Methods Partial Differ. Equ. 17(6), 632–656 (2001)
Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer-Verlag Series in Computational Mathematics, vol. 23, 2nd edn. Springer, Berlin (1994)
Rusten, T., Winther, R.: A preconditioned iterative method for saddlepoint problems. SIAM J. Matrix Anal. Appl. 13(3), 887–904 (1992). Iterative methods in numerical linear algebra (Copper Mountain, CO, 1990)
Sanchez, F.J.: Application of a first order operator splitting method to Bingham fluid flow simulation. Comput. Math. Appl. 36(3), 71–86 (1998)
Saramito, P., Roquet, N.: An adaptive finite element method for viscoplastic fluid flows in pipes. Comput. Meth. Appl. Mech. Eng. 40, 5391–5412 (2001)
Segev, R.: Load capacity of bodies. Int. J. Nonlinear Mech. 42, 250–257 (2007)
Silvester, D., Wathen, A.: Fast iterative solution of stabilised Stokes systems. II. Using general block preconditioners. SIAM J. Numer. Anal. 31(5), 1352–1367 (1994)
Strang, G.: Maximum flows and minimum cuts in the plane. In: D. Gao, H. Sherali (eds.), Advances in Mechanics and Mathematics, vol. III, pp. 1–23. Springer, Berlin (2008)
Strauss, M.J.: Variations of Korn’s and Sobolev’s inequalities. In: AMS Proceedings of Symposia in Pure Mathematics, vol. 23, pp. 207–214, 1973
Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353–372 (1976)
Temam, R.: Mathematical Problems in Plasticity. Gauthier-Villars, Paris (1985)
Wachs, A.: Numerical simulation of steady Bingham flow through an eccentric annular cross-section by distributed Lagrange multiplier/fictitious domain and augmented Lagrangian methods. J. Non Newtonian Fluid Mech. 142, 183–198 (2007)
Wathen, A., Silvester, D.: Fast iterative solution of stabilised Stokes systems. I. Using simple diagonal preconditioners. SIAM J. Numer. Anal. 30(3), 630–649 (1993)
Author information
Authors and Affiliations
Corresponding author
Additional information
In memory of Professor David Gottlieb.
About this article
Cite this article
Caboussat, A., Glowinski, R. Numerical Methods for the Vector-Valued Solutions of Non-smooth Eigenvalue Problems. J Sci Comput 45, 64–89 (2010). https://doi.org/10.1007/s10915-010-9383-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-010-9383-0