Skip to main content
Log in

An Asymptotic Preserving Scheme for the ES-BGK Model of the Boltzmann Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study a time discrete scheme for the initial value problem of the ES-BGK kinetic equation. Numerically solving these equations are challenging due to the nonlinear stiff collision (source) terms induced by small mean free or relaxation time. We study an implicit-explicit (IMEX) time discretization in which the convection is explicit while the relaxation term is implicit to overcome the stiffness. We first show how the implicit relaxation can be solved explicitly, and then prove asymptotically that this time discretization drives the density distribution toward the local Maxwellian when the mean free time goes to zero while the numerical time step is held fixed. This naturally imposes an asymptotic-preserving scheme in the Euler limit. The scheme so designed does not need any nonlinear iterative solver for the implicit relaxation term. Moreover, it can capture the macroscopic fluid dynamic (Euler) limit even if the small scale determined by the Knudsen number is not numerically resolved. We also show that it is consistent to the compressible Navier-Stokes equations if the viscosity and heat conductivity are numerically resolved. Several numerical examples, in both one and two space dimensions, are used to demonstrate the desired behavior of this scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andries, P., Le Tallec, P., Perlat, J., Perthame, B.: The Gaussian-BGK model of Boltzmann equation with small Prandtl numbers. Eur. J. Mech. B: Fluids 19, 83 (2000)

    Article  Google Scholar 

  2. Bardos, C., Golse, F., Levermore, D.: Fluid dynamic limits of kinetic equations. I. Formal derivations. J. Stat. Phys. 63, 323–344 (1991)

    Article  MathSciNet  Google Scholar 

  3. Bennoune, M., Lemou, M., Mieussens, L.: Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier–Stokes asymptotics. J. Comput. Phys. 227, 3781–3803 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bhatnagar, P.L., Gross, E.P., Krook, K.: A model for collision processes in gases. Phys. Rev. 94, 511–524 (1954)

    Article  MATH  Google Scholar 

  5. Bouchut, F., Golse, F., Pulvirenti, M.: Kinetic Equations and Asymptotic Theory. Gauthiers-Villars (2000)

  6. Brun, R.: Transport et Relaxation dans les Écoulements Gazeux. Masson, Paris (1986)

    Google Scholar 

  7. Cercignani, C.: The Boltzmann Equation and Its Applications. Springer, Berlin (1998)

    Google Scholar 

  8. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  9. Coron, F., Perthame, B.: Numerical passage from kinetic to fluid equations. SIAM J. Numer. Anal. 28, 26–42 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Desvillettes, L., Villani, C.: On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation. Invent. Math. 159, 245–316 (2004)

    Article  MathSciNet  Google Scholar 

  11. Filbet, F., Jin, S.: A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources. Preprint

  12. Filbet, F., Russo, G.: High order numerical methods for the space non-homogeneous Boltzmann equation. J. Comput. Phys. 186, 457–480 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Filbet, F., Pareschi, L., Toscani, G.: Accurate numerical methods for the collisional motion of (heated) granular flows. J. Comput. Phys. 202, 216–235 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Filbet, F., Mouhot, C., Pareschi, L.: Solving the Boltzmann equation in Nlog 2 N. SIAM J. Sci. Comput. 28, 1029–1053 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Guo, Y., Strain, R.: Almost exponential decay near Maxwellian. Commun. Part. Differ. Equ. 31(1–3), 417–429 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Holway, L.H.: Kinetic theory of shock structure using an ellipsoidal distribution function. In: Rarefied Gas Dynamics, Proc. Fourth Internat. Sympos., Univ. Toronto, 1964, vol. I, pp. 193–215. Academic Press, New York (1966)

    Google Scholar 

  17. Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441–454 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Puppo, G., Pieraccini, S.: Implicit-explicit schemes for BGK kinetic equations. J. Sci. Comput. 32, 1–28 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yang, J.Y., Huang, J.C.: Rarefied flow computations using nonlinear model Boltzmann equations. J. Comput. Phys. 120(2), 323–339 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Filbet.

Additional information

F. Filbet is partially supported by the European Research Council ERC Starting Grant 2009, project 239983-NuSiKiMo. S. Jin was partially supported by NSF grant No. DMS-0608720, NSF FRG grant DMS-0757285, and a Van Vleck Distinguished Research Prize from University of Wisconsin-Madison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filbet, F., Jin, S. An Asymptotic Preserving Scheme for the ES-BGK Model of the Boltzmann Equation. J Sci Comput 46, 204–224 (2011). https://doi.org/10.1007/s10915-010-9394-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9394-x

Keywords

Navigation