Skip to main content
Log in

Shallow Water Flows in Channels

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider the shallow water equations for flows through channels with arbitrary cross section. The system forms a hyperbolic set of balance laws. Exact steady-state solutions are available and are controlled by the relation between the bottom topography and the channel geometry. We use a Roe-type upwind scheme for the system. Considerations of conservation, near steady-state accuracy, velocity regularization and positivity near dry states are discussed. Numerical solutions are presented illustrating the merits of the scheme for a variety of flows and demonstrating the effect of the interplay between the topography and the geometry on the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25, 2050–2065 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Balbás, J., Karni, S.: A central scheme for shallow water flows along channels with irregular geometry. ESAIM: Math. Model. Numer. Anal. 43, 333–351 (2009)

    Article  MATH  Google Scholar 

  3. Bale, D.S., LeVeque, R.J., Mitran, S., Rossmanith, J.A.: A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24(3), 955–978 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources. Frontiers in Mathematics. Birkhäuser, Basel (2004)

    MATH  Google Scholar 

  5. Castro, M.J., Macias, J., Pares, C.: A Q-scheme for a class of systems of coupled conservation laws with source terms. Application to a two-layer 1-d shallow water system. ESIAM: M2AN 35, 107–127 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Castro, M.J., García-Rodríguez, J.A., González-Vida, J.M., Macías, J., Parés, C., Vázquez-Cendón, M.E.: Numerical simulation of two-layer shallow water flows through channels with irregular geometry. J. Comput. Phys. 195, 202–235 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Castro, M.J., Pardo Milanés, A., Parés, C.: Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Math. Models Methods Appl. Sci. 17(12), 2055–2113 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Črnjarić-Žic, N., Vuković, S., Sopta, L.: Balanced finite volume WENO and central WENO schemes for the shallow water and the open-channel flow equations. J. Comput. Phys. 200, 512–548 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Garcia-Navarro, P., Vazquez-Cendon, M.E.: On numerical treatment of source terms in the shallow water equations. Comput. Fluids 29, 951–979 (2000)

    Article  MATH  Google Scholar 

  10. George, D.L.: Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation. J. Comput. Phys. 227, 3089–3113 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Harten, A., Hyman, J.M.: Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 235–269 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jin, S.: A steady-state capturing method for hyperbolic systems with geometrical source terms. ESIAM: Math. Model. Numer. Anal. 35(4), 631–645 (2001)

    Article  MATH  Google Scholar 

  13. Karni, S., Hernández-Dueñas, G.: A scheme for the shallow water flow with area variation. In: International Conference on Numerical Analysis and Applied Mathematics, Rethymno, Crete, Greece. AIP Conference Proceedings, vol. 1168, pp. 1433–1436. American Institute of Physics, New York (2009)

    Google Scholar 

  14. Kurganov, A., Levy, D.: Central-upwind schemes for the Saint-Venant system. ESIAM: Math. Model. Numer. Anal. 36(3), 397–425 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5(1), 133–160 (2007)

    MATH  MathSciNet  Google Scholar 

  16. LeVeque, R.J.: Numerical Methods for Conservation Laws, 2nd edn. Birkhäuser, Basel (1992)

    MATH  Google Scholar 

  17. LeVeque, R.J.: Balancing source terms and flux gradients in high-resolution Gudonov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)

    Article  MathSciNet  Google Scholar 

  18. Noelle, S., Pankratz, N., Puppo, G., Natvig, J.R.: Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213, 474–499 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Noelle, S., Xing, Y., Shu, C.-W.: High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. Comput. Phys. 226, 29–58 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Perthame, B., Simeoni, C.: A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38(4), 201–231 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  22. Roe, P.L.: Upwind differencing schemes for hyperbolic conservation laws with source terms. In: Nonlinear Hyperbolic Problems. Proc. Adv. Res. Workshop, St. Étienne, 1986. Lect. Notes Math., vol. 1270, pp. 41–51. Springer, Berlin (1987)

    Chapter  Google Scholar 

  23. Russo, G.: Central schemes for balance laws. In: Hyperbolic Problems: Theory, Numerics, Applications, vols. I, II, Magdeburg, 2000. Internat. Ser. Numer. Math., vol. 140, pp. 821–829. Birkhäuser, Basel (2001)

    Chapter  Google Scholar 

  24. Vázquez-Cendón, M.E.: Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 148, 497–526 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vukovic̃, S., Sopta, L.: High-order ENO and WENO schemes with flux gradient and source term balancing. In: Applied Mathematics and Scientific Computing, Dubrovnik, 2001, pp. 333–346. Kluwer/Plenum, New York (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Smadar Karni.

Additional information

Work supported in part by NSF, award number DMS 0609766, and by Conacyt #160147.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández-Dueñas, G., Karni, S. Shallow Water Flows in Channels. J Sci Comput 48, 190–208 (2011). https://doi.org/10.1007/s10915-010-9430-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9430-x

Keywords

Navigation