Skip to main content

Spectral Discretization of the Axisymmetric Vorticity, Velocity and Pressure Formulation of the Stokes Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

An Erratum to this article was published on 19 April 2011

Abstract

We consider the Stokes problem in a three-dimensional axisymmetric bounded domain with non standard conditions which involve the normal component of the velocity and tangential component of the vorticity. We reduce the three-dimensional problem into a two-dimensional one and we write a variational formulation of it with three independent unknowns: the vorticity, the velocity and the pressure. Then we propose a discretization by spectral methods which relies on this formulation. A detailed numerical analysis leads to optimal error estimates for the three unknowns and numerical experiments confirm the interest of the discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdellatif, N.: Méthodes spectrales et d’élé ments spectraux pour les équations de Navier-Stokes axisymétriques. Thesis, Université Pierre et Marie Curie, Paris 6 (1997)

  2. Amara, M., Capatina-Papaghiuc, D., Chacon-Vera, E., Trujillo, D.: Vorticity-velocity-pressure formulation for Navier-Stokes equations. Comput. Vis. Sci. 6, 47–52 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Azaïez, M., Ben Belgacem, F.: Propriété des espaces H(div) axisymétriques et application à l’inversion du problème de Darcy par méthodes spectrales. Rapport interne 96.15, M.I.P. Université Paul Sabatier (1996)

  5. Azaïez, M., Bernardi, C., Dauge, M., Maday, Y.: Spectral Methods for Axisymmetric Domains. Ser. Appl. Math. vol. 3. Gauthier-Villars & North-Holland, Paris, Amsterdam (1999)

    MATH  Google Scholar 

  6. Bernardi, C., Chorfi, N.: Spectral discretization of the vorticity, velocity and pressure formulation of the Stokes problem. SIAM J. Numer. Anal. 44, 826–850 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bernardi, C., Girault, V.: Espaces duaux des domaines des opérateurs divergence et rotationnel avec trace nulle. Internal Report, Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie (2003)

  8. Bernardi, C., Maday, Y.: Basic result on spectral methods. Rapport Interne R94022, Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, Paris (1994)

  9. Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis V, pp. 209–485. North-Holland, Amsterdam (1997)

    Google Scholar 

  10. Bernardi, C., Dauge, M., Maday, Y.: Numerical analysis and spectral methods for axisymmetric domains, part I: functional prerequisite. Rapport Interne R94008, Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, Paris 6 (1994)

  11. Bernardi, C., Hecht, F., Pironneau, O.: Coupling Darcy and Stokes equations for porous media with cracks. Math. Model. Numer. Anal. 39, 7–35 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dubois, F.: Vorticity-velocity-pressure formulation for the Stokes problem. Math. Methods Appl. Sci. 25, 1091–1119 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dubois, F., Salaün, M., Salmon, S.: Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem. J. Math. Pures Appl. 82, 1395–1451 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ern, A., Guermond, J.-L., Quartapelle, L.: Vorticity-velocity formulation for the Stokes problem in 3D. Math. Methods Appl. Sci. 22, 531–546 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Girault, V.: Incompressible finite element methods for the Navier-Stokes equations with nonstandard boundary conditions in ℝ3. Math. Comput. 51, 55–74 (1988)

    MATH  MathSciNet  Google Scholar 

  16. Girault, V., Raviart, P.-A.: Finite Element Methods for the Navier-Stokes Equations, Theory and Algorithms. Springer, Berlin (1986)

    MATH  Google Scholar 

  17. Halpern, L.: Spectral Methods in polar coordinates for the Stokes problem. Application to computation in unbounded domains. Math. Comput. 65, 507–531 (1996)

    Article  MATH  Google Scholar 

  18. Maday, Y., Pavoni, D.: Spectral approximation of axisymmetric Stokes flow. Internal Report 92034, Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie. Paris (1992)

  19. Nédélec, J.-C.: Mixed finite elements in ℝ3. Numer. Math. 35, 315–341 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  20. Salmon, S.: Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes. Thesis, Université Pierre et Marie Curie, Paris (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejmeddine Chorfi.

Additional information

The research of N. Chorfi was supported by the King Saud University, D.S.F.P. Program.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10915-011-9484-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdellatif, N., Chorfi, N. & Trabelsi, S. Spectral Discretization of the Axisymmetric Vorticity, Velocity and Pressure Formulation of the Stokes Problem. J Sci Comput 47, 419–440 (2011). https://doi.org/10.1007/s10915-010-9446-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9446-2

Keywords