Skip to main content
Log in

Augmented Lagrangian Method for Generalized TV-Stokes Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a general form of TV-Stokes models and provide an efficient and fast numerical algorithm based on the augmented Lagrangian method. The proposed model and numerical algorithm can be used for a number of applications such as image inpainting, image decomposition, surface reconstruction from sparse gradient, direction denoising, and image denoising. Comparing with properties of different norms in regularity term and fidelity term, various results are investigated in applications. We numerically show that the proposed model recovers jump discontinuities of a data and discontinuities of the data gradient while reducing stair-case effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2, 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Tai, X.-C., Wu, C.: Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model. In: SSVM ’09: Proceedings of the Second International Conference on Scale Space and Variational Methods in Computer Vision, pp. 502–513. Springer, Berlin (2009)

    Chapter  Google Scholar 

  3. Wu, C., Tai, X.-C.: Agmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 3, 300–339 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20, 1999 (1964–1977)

    MathSciNet  Google Scholar 

  5. Chambolle, A.: An algorithm for total variational minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  6. Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28(1), 1–23 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bresson, X., Chan, T.F.: Fast daul minimization of the vectorial total variation norm and applications to color image processing. Inverse Probl. Theor. Imaging 2, 455–484 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. Technical report, UCLA CAM Report 08-34 (2008)

  9. Zhang, X., Burger, M., Osher, S.: A unified primal-dual algorithm framework based on Bregman iteration. Technical report, UCLA CAM Report 09-99 (2009)

  10. Dong, Y., Hintermüller, M., Neri, M.: An efficient primal-dual method for L 1-TV image restoration. SIAM J. Imaging Sci. 2(4), 1168–1189 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Yin, W.T., Osher, S., Goldfarb, D., Darbon, F.: Bregman iterative algorithms for compressed sensing and related problems. SIAM J. Imaging Sci. 1, 143–168 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Bregman. Technical report, UCLA CAM Report 09-31 (2009)

  13. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1, 248–272 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Yang, Y., Zhang, Y., Yin, W.: An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J. Sci. Comput. 31, 2842–2865 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ng, M., Weiss, P., Yuan, X.: Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods. SIAM J. Sci. Comput. 32, 2710–2736 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Setzer, S.: Splitting Bregman algorithm, Douglas-Rachford splitting and frame shrinkage. In: SSVM’09: Proceedings of the Second International Conference on Scale Space and Variational Methods in Computer Vision, pp. 464–476. Springer, Berlin (2009)

    Chapter  Google Scholar 

  17. Steidl, G., Teuber, T.: Removing multiplicative noise by Douglas-Rachford splitting methods. J. Math. Imaging Vis. 36(2), 168–184 (2010)

    Article  MathSciNet  Google Scholar 

  18. Koko, J., Jehan-Besson, S.: An augmented Lagrangian method for TVg+l 1-norm minimization. Technical report. Research Report LIMOS/RR-09-07 (2009)

  19. Aujol, J.-F.: Some first-order algorithms for total variation based image restoration. J. Math. Imaging Vis. 34, 307–327 (2009)

    Article  MathSciNet  Google Scholar 

  20. Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal-dual algorithms for TV minimization. Technical report, UCLA CAM Report 09-67 (2009)

  21. Rahman, T., Tai, X.-C., Osher, S.: A TV-Stokes denoising algorithm. In: Scale Space and Variational Methods in Computer Vision, pp. 473–482. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Elo, C.A., Malyshev, A., Rahman, T.: A dual formulation of the TV-Stokes algorithm for image denoising. In: SSVM ’09: Proceedings of the Second International Conference on Scale Space and Variational Methods in Computer Vision, pp. 307–318. Springer, Berlin (2009)

    Chapter  Google Scholar 

  23. Lysaker, M., Osher, S., Tai, X.-C.: Noise removal using smoothed normals and surface fitting. IEEE Trans. Image Process. 13(10), 1345–1357 (2004)

    Article  MathSciNet  Google Scholar 

  24. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  25. Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003)

    Article  Google Scholar 

  26. Dong, F., Liu, Z., Kong, D., Liu, K.: An improved LOT model for image restoration. J. Math. Imaging Vis. 34, 89–97 (2009)

    Article  MathSciNet  Google Scholar 

  27. Tai, X.-C., Osher, S., Holm, R.: Image inpainting using TV-Stokes equation. In: Image Processing Based on Partial Differential Equations, pp. 3–22. Springer, Heidelberg (2006)

    Google Scholar 

  28. Bertalmio, M., Bertozzi, A.L., Sapiro, G.: Navier-Stokes, fluid dynamica, and image and video inpainting. In: Proc. Conf. Comp. Vision Pattern Rec., pp. 355–362 (2001)

    Google Scholar 

  29. Frankot, R.T., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 10(4), 439–451 (1988)

    Article  MATH  Google Scholar 

  30. Reddy, D., Agrawal, A., Chellappa, R.: Enforcing integrability by error correction using l 1-minimization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2350–2357 (2009)

    Chapter  Google Scholar 

  31. Litvinov, W.G., Rahman, T., Tai, X.-C.: A modified TV-Stokes model for image processing. Technical report. Preprints—Herausgeber: Institut für Mathematik der Universität Augsburg 2009-25 (2009)

  32. Ballester, C., Bertalmio, M., Caselles, V., Sapiro, G., Verdera, J.: Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans. Image Process. 10(8), 1200–1211 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  33. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. Glowinski, R., Tallec, P.L.: Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)

    Book  Google Scholar 

  35. Wu, C., Zhang, J., Tai, X.-C.: Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Technical report, UCLA CAM Report 09-82 (2009)

  36. Weickert, J., ter Harr Romeny, B.M., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7, 398–410 (2001)

    Article  Google Scholar 

  37. Hahn, J., Sofia, B., Tai, X.-C., Bruckstein, A.M.: On orientation-matching minimization TV-Stokes equation image denoising and image inpainting. Int. J. Comput. Vis. 92, 308–324 (2011). doi:10.1007/s11263-010-0371-5

    Article  MathSciNet  Google Scholar 

  38. Masnou, S., Morel, J.-M.: Level lines based disocclusion. In: Proc. IEEE Int. Conf. on Image Processing, Chicago, IL, pp. 259–263 (1998)

    Google Scholar 

  39. Chan, T.F., Kang, S.-H., Shen, J.: Euler’s elastica and curvature based inpaintings. SIAM J. Appl. Math. 63(2), 564–594 (2002)

    MATH  MathSciNet  Google Scholar 

  40. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. AMS, Providence (2002)

    Google Scholar 

  41. Osher, S., Solé, A., Vese, L.: Image decomposition and restoration using total variation minimization and the h −1 norm. SIAM J. Multiscale Model. Simul. 1(3), 349–370 (2002)

    Article  Google Scholar 

  42. Vese, L., Osher, S.: Modeling textures with total variation minimization and oscillating patterns in image processing. J. Sci. Comput. 19, 553–572 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  43. Tasdizen, T., Whitaker, R., Burchard, P., Osher, S.: Geometric surface processing via normal maps. ACM Trans. Graph. 22, 1012–1033 (2003)

    Article  Google Scholar 

  44. Wu, T.-P., Tang, C.-K., Brown, M.S., Shum, H.-Y.: Shapepalettes: Interactive normal transfer visa sketching. ACM Trans. Graph. 26(307), 44 (2007)

    Article  Google Scholar 

  45. Ng, H.S., Wu, T.-P., Tang, C.-K.: Surface-from-gradients with incomplete data for single view modeling. In: ICCV07, pp. 1–8 (2007)

    Google Scholar 

  46. Chan, T.F., Esedoḡlu, S.: Aspects of total variation regularized l 1 function approximation. SIAM J. Appl. Math. 65, 1817–1837 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Strong, D., Chan, T.F.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 19, 165–187 (2003)

    Article  MathSciNet  Google Scholar 

  48. Alliney, S.: Digital filters as absolute norm regularizers. IEEE Trans. Signal Process. 40, 1548–1562 (1992)

    Article  MATH  Google Scholar 

  49. Nikolova, M.: Minimizers of cost-functions involving non-smooth data-fidelity terms. SIAM J. Numer. Anal. 40, 965–994 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jooyoung Hahn.

Additional information

The research is supported by MOE (Ministry of Education) Tier II project T207N2202 and IDM project NRF2007IDMIDM002-010.

Jooyoung Hahn, who is currently at Institute of Mathematics and Scientific Computing in University of Graz, Austria, has been supported by the Austrian Science Fund (FWF) under the START-Program Y305 “Interfaces and Free Boundaries” and the SFB “Mathematical Optimization and Its Applications in Biomedical Sciences” since November 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, J., Wu, C. & Tai, XC. Augmented Lagrangian Method for Generalized TV-Stokes Model. J Sci Comput 50, 235–264 (2012). https://doi.org/10.1007/s10915-011-9482-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9482-6

Keywords

Navigation