Abstract
We develop a hybrid implicit and explicit adaptive multirate time integration method to solve systems of time-dependent equations that present two significantly different scales. We adopt an iteration scheme to decouple the equations with different time scales. At each iteration, we use an implicit Galerkin method with a fast time-step to solve for the fast scale variables and an explicit method with a slow time-step to solve for the slow variables. We derive an error estimator using a posteriori analysis which controls both the iteration number and the adaptive time-step selection. We present several numerical examples demonstrating the efficiency of our scheme and conclude with a stability analysis for a model problem.
Similar content being viewed by others
References
Amitai, D., Averbuch, A., Israeli, M., Itzikowitz, S.: Implicit-explicit parallel asynchronous solver of parabolic PDEs. SIAM J. Sci. Comput. 19(4), 1366–1404 (1998)
Andrus, J.F.: Numerical solutions of systems of ordinary differential equations separated into subsystems. SIAM J. Numer. Anal. 16, 605–611 (1979)
Andrus, J.F.: Stability of a multirate method for numerical integration of ODEs. Math. Comput. Appl. 25(2), 3–14 (1993)
Bartel, A., Gunther, M.: A multirate W-method for electrical networks in state-space formulation. J. Comput. Appl. Math. 147, 411–425 (2002)
Biesiadecki, J.J., Skeel, R.D.: Dangers of multiple time step methods. J. Comput. Phys. 109, 318–328 (1993)
Bouzarth, E.L., Minion, M.L.: A multirate time integrator for regularized Stokeslets. J. Comput. Phys. 229, 4208–4224 (2010)
Cockburn, B., Karniadakis, G., Shu, C.-W.: Discontinuous Galerkin Methods: Theory, Computation and Applications. Springer, Berlin (2000)
Constantinescu, E.M., Sandu, A.: Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comput. 33, 239–278 (2007)
Constantinescu, E.M., Sandu, A.: Multirate explicit Adams methods for time integration of conservation laws. J. Sci. Comput. 38, 229–249 (2009)
Dawson, C., Du, Q., Dupont, T.: A finite difference domain decomposition algorithm for numerical solution of the heat equation. Math. Comput. 57, 63–71 (1991)
Dukowicz, J.K., Smith, R.D.: Implicit free-surface method for the Brian–Cox–Semtner ocean model. J. Geophys. Res. 99(C4), 7991–8014 (1994)
Engstler, C., Lubich, C.: MUR8: a multirate extension of the eighth-order Dormand-Prince method. Appl. Numer. Math. 25, 185–192 (1997)
Estep, D., Ginting, V., Ropp, D., Shadid, J.N., Tavener, S.: An a posteriori-a priori analysis of multiscale operator splitting. SIAM J. Numer. Anal. 46(3), 1116–1146 (2008)
Estep, D., Ginting, V., Tavener, S.: A posteriori analysis of a multirate numerical method for ordinary differential equations (2011, in preparation)
Gear, C.W., Wells, D.R.: Multirate linear multistep methods. BIT Numer. Math. 24, 484–502 (1984)
Higdon, R.L., de Szoeke, R.A.: Barotropic-baroclinic time splitting for ocean circulation modeling. J. Comput. Phys. 135, 30–53 (1997)
Hofer, E.: A partially implicit method for large stiff systems of ODEs with only few equations introducing small time-constants. SIAM J. Numer. Anal. 13(5), 645–663 (1976)
Hundsdorfer, W., Savcenco, V.: Analysis of a multirate theta-method for stiff ODEs. Appl. Numer. Math. 59, 693–706 (2009)
Layton, A.T., Minion, M.L.: Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics. J. Comput. Phys. 194, 697–715 (2004)
Logg, A.: Multi-adaptive Galerkin methods for ODEs I. SIAM J. Sci. Comput. 24, 1879–1901 (2003)
Oberhuber, J.M.: Simulation of the Atlantic circulation with a coupled sea ice—mixed layer—isopycnal general circulation model. Part I. Model description. J. Phys. Oceanogr. 23, 808–829 (1993)
Sand, J., Skelboe, S.: Stability of backward Euler multirate methods and convergence of waveform relaxation. BIT Numer. Math. 32, 350–366 (1992)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chabaud, B., Du, Q. A Hybrid Implicit-Explicit Adaptive Multirate Numerical Scheme for Time-Dependent Equations. J Sci Comput 51, 135–157 (2012). https://doi.org/10.1007/s10915-011-9499-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-011-9499-x