Skip to main content
Log in

Hybrid Well-balanced WENO Schemes with Different Indicators for Shallow Water Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In (J. Comput. Phys. 229: 8105–8129, 2010), Li and Qiu investigated the hybrid weighted essentially non-oscillatory (WENO) schemes with different indicators for Euler equations of gas dynamics. In this continuation paper, we extend the method to solve the one- and two-dimensional shallow water equations with source term due to the non-flat bottom topography, with a goal of obtaining the same advantages of the schemes for the Euler equations, such as the saving computational cost, essentially non-oscillatory property for general solution with discontinuities, and the sharp shock transition. Extensive simulations in one- and two-dimensions are provided to illustrate the behavior of this procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alcrudo, F., Benkhaldoun, F.: Exact solution to the Riemann problem of the shallow water euqaionts with a bottom step. Comput. Fluids 30, 643–671 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bermudez, A., Vazquez, M.E.: Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids 23, 1049–1071 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Cosat, B., Don, W.S.: High order hybrid central-WENO finite difference scheme for conservation laws. J. Comput. Appl. Math. 204, 209–218 (2007)

    Article  MathSciNet  Google Scholar 

  5. Crnjaric, N., Vukovic, S., Sopta, L.: Extension of ENO and WENO schemes to one-dimensional sediment transport equations. Comput. Fluids 33, 31–56 (2004)

    Article  MATH  Google Scholar 

  6. Fennema, R.J., Chaudhry, M.H.: Explicit methods for 2D transient free surface flows. J. Hydraul. Eng. 116, 1013–1034 (1990)

    Article  Google Scholar 

  7. Harten, A.: Adaptive multiresolution schemes for shock computations. J. Comput. Phys. 115, 319–338 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N., Flaherty, J.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. LeVeque, R.J.: Balancing source terms and flux gradient on high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys. 146, 346–365 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, G., Qiu, J.: Hybrid weighted essentially non-oscillatory schemes with different indicators. J. Comput. Phys. 229, 8105–8129 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pirozzoli, S.: Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J. Comput. Phys. 178, 81–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Qiu, J., Shu, C.-W.: A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters. SIAM J. Sci. Comput. 27, 995–1013 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rogers, B.D., Borthwick, A.G.L., Taylor, P.H.: Mathematical balancing of flux gradient and source terms prior to using Roe’s approximate Riemann solver. J. Comput. Phys. 192, 422–451 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shu, C.-W., Osher, S.: Efficient implementiation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. NASA/CR-97-206253, ICASE Report NO.97-65 (1997)

  17. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Toro, E.F.: Shock-capturing Methods for Free-surface Shallow Flows. Wiley, New York (2001)

    MATH  Google Scholar 

  19. Vukovic, S., Sopta, L.: ENO and WENO schemes with the exact conservation property for one-dimensional shallow water equations. J. Comput. Phys. 179, 593–621 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xing, Y., Shu, C.-W.: High order finite difference WENO schemes with the exact conservation property for the shallow water equations. J. Comput. Phys. 208, 206–227 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xing, Y., Shu, C.-W.: High-order well-balanced finite difference WENO schemes for a class of hyperbolic systems with source terms. J. Sci. Comput. 27, 477–494 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xing, Y., Shu, C.-W.: High order well-balanced finite volume WENO schemes and discontinuous Galerkin methods for a class of hyperbolic systems with source terms. J. Comput. Phys. 214, 567–598 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33, 1476–1493 (2010)

    Article  Google Scholar 

  24. Zhou, J.G., Causon, D.M., Mingham, C.G., Ingram, D.M.: The surface gradient method for the treatment of source terms in the shallow-water equations. J. Comput. Phys. 168, 1–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhu, H., Qiu, J.: Adaptive Runge-Kutta discontinuous Galerkin methods using different indicators: one-dimensional case. J. Comput. Phys. 228, 6957–6976 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxian Qiu.

Additional information

The research was partially supported by NSFC 10931004, 40906048 and Science research fund of Nanjing University of Information Science & Technology 20090203.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Lu, C. & Qiu, J. Hybrid Well-balanced WENO Schemes with Different Indicators for Shallow Water Equations. J Sci Comput 51, 527–559 (2012). https://doi.org/10.1007/s10915-011-9520-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9520-4

Keywords

Navigation