Skip to main content
Log in

A Posteriori Error Estimates for HDG Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present the first a posteriori error analysis of the so-called hybridizable discontinuous Galerkin (HDG) methods for second-order elliptic problems. We show that the error in the flux can be controlled by only two terms. The first term captures the so-called data oscillation. The second solely depends on the difference between the trace of the scalar approximation and the corresponding numerical trace. Numerical experiments verifying the reliability and efficiency of the estimate in two-space dimensions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19, 7–32 (1985)

    MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bramble, J.H., Xu, J.: A local post-processing technique for improving the accuracy in mixed finite-element approximations. SIAM J. Numer. Anal. 26(6), 1267–1275 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brezzi, F., Cockburn, B., Marini, L.D., Süli, E.: Stabilization mechanisms in discontinuous Galerkin finite element methods. Comput. Methods Appl. Mech. Eng. 195, 3293–3310 (2006)

    Article  MATH  Google Scholar 

  5. Brezzi, F., Douglas, J. Jr., Durán, R.E., Fortin, M.: Mixed finite element methods for second order elliptic problems in three variables. Numer. Math. 51, 237–250 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezzi, F., Douglas, J. Jr., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47, 217–235 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  8. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77, 1887–1916 (2008)

    Article  MATH  Google Scholar 

  9. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Guzmán, J., Wang, H.: Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comput. 78, 1–24 (2009)

    Article  MATH  Google Scholar 

  12. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of a second order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karakashian, O.A., Pascal, F.: Convergence of adaptive discontinuous Galerkin approximations of second order elliptic problems. SIAM J. Numer. Anal. 45, 641–665 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Larson, M.G., Målqvist, A.: A posteriori error estimates for mixed finite element approximations of elliptic problems. Numer. Math. 108, 487–500 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lovadina, C., Marini, L.: A-posteriori error estimates for discontinuous Galerkin approximations of second order elliptic problems. J. Sci. Comput. 40, 340–359 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lovadina, C., Stenberg, R.: Energy norm a posteriori error estimates for mixed finite element methods. Math. Comput. 75, 1659–1674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nédélec, J.-C.: A new family of mixed finite elements in \(\textbf{R}\sp3\). Numer. Math. 50, 57–81 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Raviart, P.A., Thomas, J.M.: A mixed finite element method for second order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of Finite Element Method. Lecture Notes in Math, vol. 606, pp. 292–315. Springer, New York (1977)

    Chapter  Google Scholar 

  20. Stenberg, R.: Postprocessing schemes for some mixed finite elements. RAIRO Modél. Math. Anal. Numér. 25, 151–167 (1991)

    MathSciNet  MATH  Google Scholar 

  21. Verfürth, R.: A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50, 67–83 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Funken, S., Praetorius, D., Wissgott, P.: Efficient implementation of adaptive P1-FEM in MATLAB, Preprint (2008)

  23. Sacchi, R., Veeser, A.: Locally efficient and reliable a posteriori error estimators for Dirichlet problems. Math. Models Methods Appl. Sci. 16, 319–346 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wujun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cockburn, B., Zhang, W. A Posteriori Error Estimates for HDG Methods. J Sci Comput 51, 582–607 (2012). https://doi.org/10.1007/s10915-011-9522-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9522-2

Keywords

Navigation