Skip to main content
Log in

A Variational Data Assimilation Procedure for the Incompressible Navier-Stokes Equations in Hemodynamics

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a data assimilation (DA) technique for including noisy measurements of the velocity field into the simulation of the Navier-Stokes equations (NSE) driven by hemodynamics applications. The technique is formulated as an inverse problem where we use a Discretize-then-Optimize approach to minimize the misfit between the recovered velocity field and the data, subject to the incompressible NSE. The DA procedure for this nonlinear problem is a combination of two approaches: the Newton method for the NSE and the DA procedure we designed and tested for the linearized problem. We discuss conditions on the location of velocity measurements that guarantee the well-posedness of the minimization process for the linearized problem. Numerical results, with both noise-free and noisy data, certify the theoretical analysis. Moreover, we consider 2D non-trivial geometries and 3D axisymmetric geometries. Also, we study the impact of noise on non-primitive variables of medical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benzi, M., Olshanskii, M.A., Wang, Z.: Modified augmented Lagrangian preconditioners for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids (2010)

  2. Blum, J., Le Dimet, F.X., Navon, I.M.: Data Assimilation for Geophysical Fluids. Handbook of Numerical Analysis, vol. XIV. Amsterdam, Elsevier (2005). Chap. 9

    Google Scholar 

  3. D’Elia, M., Veneziani, A.: A data assimilation technique for including noisy measurements of the velocity field into Navier-stokes simulations. In: Proceedings of V European Conference on Computational Fluid Dynamics, ECCOMAS, June 2010 (2010)

    Google Scholar 

  4. D’Elia, M., Veneziani, A.: In preparation. Internal report, Emory University, Atlanta, GA (2010)

  5. D’Elia, M., Veneziani, A.: Methods for assimilating blood velocity measures in hemodynamics simulations: preliminary results. Proc. Comput. Sci. 1(1), 1225–1233 (2010)

    Google Scholar 

  6. den Reijer, P.M., Sallee, D., van der Velden, P., Zaaijer, E., Parks, W.J., Ramamurthy, S., Robbie, T., Lamphier, G. Donati C., Beekman, R., Brummer, M.: Hemodynamic predictors of aortic dilatation in bicuspid aortic valve by velocity-encoded cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 12(1), 4 (2010)

    Article  Google Scholar 

  7. Dwight, R.P.: Bayesian inference for data assimilation using least-squares finite element methods. In: IOP Conference Series: Materials Science and Engineering, vol. 10, p. 012224. IOP Publishing, Bristol (2010)

    Google Scholar 

  8. Formaggia, L., Quarteroni, A., Veneziani, A. (eds.): Cardiovascular Mathematics. Springer, Berlin (2009)

    MATH  Google Scholar 

  9. Galdi, G.P., Rannacher, R., Robertson, A.M., Turek, S.: Hemodynamical Flows, Modeling, Analysis and Simulation. Birkhauser, Boston (2008)

    MATH  Google Scholar 

  10. Gunzburger, M.D.: Sensitivities, adjoints and flow optimization. Int. J. Numer. Methods Fluids 31(1), 53–78 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gunzburger, M.D.: Perspectives in Flow Control and Optimization. Society for Industrial Mathematics, December 2002

  12. Gunzburger, M.D., Hou, L.S., Svobodny, T.P.: Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Dirichlet controls. Modél. Math. Anal. Numér. 25(6), 711–748 (1991)

    MathSciNet  MATH  Google Scholar 

  13. Gunzburger, M.D., Hou, S.L., Svobodny, T.P.: Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls. Math. Comput. 57(195), 123–151 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. Society for Industrial and Applied Mathematics, Philadelphia (1998)

    Book  Google Scholar 

  15. Head, R.A., Todling, R.: Estimation theory and foundations of atmospheric data assimilation. Internal report from DAO, Greenbelt, Maryland, June 1999

  16. Heys, J.J., Manteuffel, T.A., McCormick, S.F., Milano, M., Westerdale, J., Belohlavek, M.: Weighted least-squares finite elements based on particle imaging velocimetry data. J. Comput. Phys. 229(1), 107–118 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-stokes equations. Technical report (1992)

  18. Hinze, M.: Optimal and instantaneous control of the instationary Navier-Stokes equations (2000)

  19. Hinze, M., Kunisch, K.: Second order methods for boundary control of the instationary Navier-Stokes system. Z. Angew. Math. Mech. 84(3), 171–187 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kay, D., Loghin, D., Wathen, A.: A preconditioner for the steady-state Navier–stokes equations. SIAM J. Sci. Comput. 24, 237–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lions, J.L.: On the controllability of distributed systems. Proc. Natl. Acad. Sci. USA 94, 4828–4835 (1997)

    Article  MATH  Google Scholar 

  22. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2000)

    Google Scholar 

  23. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  24. Rivlin, T.J.: An Introduction to the Approximation of Functions. Courier Dover, New York (2003)

    Google Scholar 

  25. Robinson, A.R., F.J. Lermusiaux, P.: Over view of data assimilation. Technical Report 62, Harvard University, Cambridge, Massachusetts, August 2000

  26. Collis, S.S., Ghayour, K., Heinkenschloss, M., Ulbrich, M., Ulbrich, S.: Optimal control of unsteady compressible viscous flows. Int. J. Numer. Methods Fluids 40(11), 1401–1429 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Silvester, D., Elman, H., Kay, D., Wathen, A.: Efficient preconditioning of the linearized Navier-Stokes equations for incompressible flow. J. Comput. Appl. Math. 128(1–2), 261–279 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Taylor, C.A., Draney, M.T., Ku, J.P., Parker, D., Steele, B.N., Wang, K., Zarins, C.K.: Predictive medicine: Computational techniques in therapeutic decision-making. Comput. Aided Surg. 4(5), 231–247 (1999)

    Article  Google Scholar 

  29. Veneziani, A., Vergara, C.: An approximate method for solving incompressible Navier-stokes problems with flow rate conditions. Comput. Methods Appl. Mech. Eng. 196(9–12), 1685–1700 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, B., Zou, X., Zhu, J.: Data assimilation and its applications. Proc. Natl. Acad. Sci. USA 97(21), 11143–11144 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta D’Elia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Elia, M., Perego, M. & Veneziani, A. A Variational Data Assimilation Procedure for the Incompressible Navier-Stokes Equations in Hemodynamics. J Sci Comput 52, 340–359 (2012). https://doi.org/10.1007/s10915-011-9547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9547-6

Keywords

Navigation