Skip to main content
Log in

WENO Scheme with Subcell Resolution for Computing Nonconservative Euler Equations with Applications to One-Dimensional Compressible Two-Medium Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

High order path-conservative schemes have been developed for solving nonconservative hyperbolic systems in (Parés, SIAM J. Numer. Anal. 44:300–321, 2006; Castro et al., Math. Comput. 75:1103–1134, 2006; J. Sci. Comput. 39:67–114, 2009). Recently, it has been observed in (Abgrall and Karni, J. Comput. Phys. 229:2759–2763, 2010) that this approach may have some computational issues and shortcomings. In this paper, a modification to the high order path-conservative scheme in (Castro et al., Math. Comput. 75:1103–1134, 2006) is proposed to improve its computational performance and to overcome some of the shortcomings. This modification is based on the high order finite volume WENO scheme with subcell resolution and it uses an exact Riemann solver to catch the right paths at the discontinuities. An application to one-dimensional compressible two-medium flows of nonconservative or primitive Euler equations is carried out to show the effectiveness of this new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi-conservative approach. J. Comput. Phys. 125, 150–160 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169, 594–623 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abgrall, R., Karni, S.: A comment on the computation of non-conservative products. J. Comput. Phys. 229, 2759–2763 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys. 118, 269–277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. van Brummelen, E.H., Koren, B.: A pressure-invariant conservative Godunov-type method for barotropic two-fluid flows. J. Comput. Phys. 185, 289–308 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castro, M.J., Fernández-Nieto, E.D., Ferreiro, A.M., García-Rodríguez, J.A., Parés, C.: High order extensions of Roe schemes for two-dimensional nonconservative hyperbolic systems. J. Sci. Comput. 39, 67–114 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castro, M.J., Gallardo, J.M., Parés, C.: High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Application to shallow-water systems. Math. Comput. 75, 1103–1134 (2006)

    Article  MATH  Google Scholar 

  8. Castro, M.J., LeFloch, P., Muñoz-Ruiz, M.L., Parés, C.: Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes. J. Comput. Phys. 227, 8107–8129 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, T.-J., Cooke, C.H.: On the Riemann problem for liquid or gas-liquid media. Int. J. Numer. Methods Fluids 18, 529–541 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cocchi, J.-P., Saurel, R.: A Riemann problem based method for the resolution of compressible multimaterial flows. J. Comput. Phys. 137, 265–298 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dal Maso, G., LeFloch, P., Murat, F.: Definition and weak stability of non-conservative products. J. Math. Pure Appl. 74, 483–548 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Dumbser, M., Toro, E.F.: A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems. J. Sci. Comput. 48, 70–88 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method). J. Comput. Phys. 152, 457–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fedkiw, R.P., Marquina, A., Merriman, B.: An isobaric fix for the overheating problem in multimaterial compressible flows. J. Comput. Phys. 148, 545–578 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38, 251–289 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harten, A.: ENO schemes with subcell resolution. J. Comput. Phys. 83, 148–184 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harten, A., Hyman, J.M.: Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 235–269 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hou, T.Y., LeFloch, P.: Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62, 497–530 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, G., Peng, D.-P.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Karni, S.: Viscous shock profiles and primitive formulations. SIAM J. Numer. Anal. 29, 1592–1609 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Karni, S.: Multicomponent flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112, 31–43 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Larrouturou, B.: How to preserve the mass fractions positivity when computing compressible multi-component flow. J. Comput. Phys. 95, 31–43 (1991)

    Article  MathSciNet  Google Scholar 

  26. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  27. Liu, T.G., Khoo, B.C., Wang, C.W.: The ghost fluid method for compressible gas-water simulation. J. Comput. Phys. 204, 193–221 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, T.G., Khoo, B.C., Yeo, K.S.: The simulation of compressible multi-medium flow. Part I: a new methodology with applications to 1D gas-gas and gas-water cases. Comput. Fluids 30, 291–314 (2001)

    Article  MATH  Google Scholar 

  29. Liu, T.G., Khoo, B.C., Yeo, K.S.: The simulation of compressible multi-medium flow. Part II: applications to 2D underwater shock refraction. Comput. Fluids 30, 315–337 (2001)

    Article  Google Scholar 

  30. Liu, T.G., Khoo, B.C., Yeo, K.S.: Ghost fluid method for strong shock impacting on material interface. J. Comput. Phys. 190, 651–681 (2003)

    Article  MATH  Google Scholar 

  31. Liu, W., Yuan, Y., Shu, C.-W.: A conservative modification to the ghost fluid method for compressible multiphase flows. Commun. Comput. Phys. 10, 1238–1248 (2011)

    MathSciNet  Google Scholar 

  32. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mulder, W., Osher, S., Sethian, J.A.: Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100, 209–228 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Osher, S., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2003)

    MATH  Google Scholar 

  35. Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44, 300–321 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Qiu, J., Liu, T., Khoo, B.C.: Runge-Kutta discontinuous Galerkin methods for compressible two-medium flow simulations: one-dimensional case. J. Comput. Phys. 222, 353–373 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Qiu, J., Liu, T., Khoo, B.C.: Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with the Ghost Fluid Method. Commun. Comput. Phys. 3, 479–504 (2008)

    MathSciNet  MATH  Google Scholar 

  38. Quirk, J.J., Karni, S.: On the dynamics of a shock-bubble interaction. J. Fluid Mech. 318, 129–163 (1996)

    Article  MATH  Google Scholar 

  39. Shi, J., Hu, C., Shu, C.-W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175, 108–127 (2002)

    Article  MATH  Google Scholar 

  40. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E. (eds.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998) (Editor: A. Quarteroni)

    Chapter  Google Scholar 

  41. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  43. Smoller, J.: Shock Waves and Reaction-Diffusion Equations, 2nd edn. Springer, New York (1994)

    Book  MATH  Google Scholar 

  44. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994)

    Article  MATH  Google Scholar 

  45. Tian, B., Toro, E.F., Castro, C.E.: A path-conservative method for a five-equation model of two-phase flow with an HLLC-type Riemann solver. Comput. Fluids 46, 122–132 (2011)

    Article  MATH  Google Scholar 

  46. Tokareva, S.A., Toro, E.F.: HLLC-Type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229, 3573–3604 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edn. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  48. Toumi, I.: A weak formulation of Roe’s approximate Riemann solver. J. Comput. Phys. 102, 360–373 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, C.W., Liu, T.G., Khoo, B.C.: A real-ghost fluid for the simulation of multi-medium compressible flow. SIAM J. Sci. Comput. 28, 278–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, C.W., Shu, C.-W.: An interface treating technique for compressible multi-medium flow with Runge-Kutta discontinuous Galerkin method. J. Comput. Phys. 229, 8823–8843 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wang, W., Shu, C.-W., Yee, H.C., Sjógreen, B.: High order finite difference methods with subcell resolution for advection equations with stiff source terms. J. Comput. Phys. 231, 190–214 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang, Z.J., Zhang, L., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional Euler equations. J. Comput. Phys. 194, 716–741 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wardlaw, A.: Underwater Explosion Test Cases. IHTR 2069 (1998)

  54. Xiong, T., Zhang, M., Zhang, Y.-T., Shu, C.-W.: Fast sweeping fifth order WENO scheme for static Hamilton-Jacobi equations with accurate boundary treatment. J. Sci. Comput. 45, 514–536 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhu, J., Qiu, J., Liu, T.G., Khoo, B.C.: RKDG methods with WENO type limiters and conservative interfacial procedure for one-dimensional compressible multi-medium flow simulations. Appl. Numer. Math. 61, 554–580 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Wei Liu for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Wang Shu.

Additional information

Dedicated to Professor Saul Abarbanel on the occasion of his 80th birthday.

C.-W. Shu was supported by ARO grant W911NF-11-1-0091 and NSF grant DMS-1112700.

M. Zhang was supported by NSFC grant 11071234.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, T., Shu, CW. & Zhang, M. WENO Scheme with Subcell Resolution for Computing Nonconservative Euler Equations with Applications to One-Dimensional Compressible Two-Medium Flows. J Sci Comput 53, 222–247 (2012). https://doi.org/10.1007/s10915-012-9578-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9578-7

Keywords

Navigation