Skip to main content
Log in

Investigation of Commutative Properties of Discontinuous Galerkin Methods in PDE Constrained Optimal Control Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The aim of this paper is to investigate commutative properties of a large family of discontinuous Galerkin (DG) methods applied to optimal control problems governed by the advection-diffusion equations. To compute numerical solutions of PDE constrained optimal control problems there are two main approaches: optimize-then-discretize and discretize-then-optimize. These two approaches do not always coincide and may lead to substantially different numerical solutions. The methods for which these two approaches do coincide we call commutative. In the theory of single equations, there is a related notion of adjoint or dual consistency. In this paper we classify DG methods both in primary and mixed forms and derive necessary conditions that can be used to develop new commutative methods. We will also derive error estimates in the energy and L 2 norms. Numerical examples reveal that in the context of PDE constrained optimal control problems a special care needs to be taken to compute the solutions. For example, choosing non-commutative methods and discretize-then-optimize approach may result in a badly behaved numerical solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ayuso, B., Marini, L.D.: Discontinuous Galerkin methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 47, 1391–1420 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 175, 311–341 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Becker, R., Vexler, B.: Optimal control of the convection-diffusion equation using stabilized finite element methods. Numer. Math. 106, 349–367 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bochev, P.B., Gunzburger, M.D.: Least-squares finite element methods. Applied Mathematical Sciences, vol. 166. Springer, New York (2009)

    MATH  Google Scholar 

  7. Braack, M.: Optimal control in fluid mechanics by finite elements with symmetric stabilization. SIAM J. Control Optim. 48, 672–687 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezzi, F., Cockburn, B., Marini, L.D., Süli, E.: Stabilization mechanisms in discontinuous Galerkin finite element methods. Comput. Methods Appl. Mech. Eng. 195, 3293–3310 (2006)

    Article  MATH  Google Scholar 

  9. Brezzi, F., Marini, L.D., Süli, E.: Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Models Methods Appl. Sci. 14, 1893–1903 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Castillo, P., Cockburn, B., Pergugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B.: Discontinuous Galerkin methods. Z. Angew. Math. Mech. 83, 731–754 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Dong, B., Guzmán, J.: Optimal convergence of the original DG method for the transport-reaction equation on special meshes. SIAM J. Numer. Anal. 46, 1250–1265 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Collis, S.S., Heinkenschloss, M.: Analysis of the streamline upwind/Petrov Galerkin method applied to the solution of optimal control problems. Tech. Report TR02–01, Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005–1892 (2002). http://www.caam.rice.edu/~heinken

  16. Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193, 2565–2580 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Douglas, J. Jr., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Computing Methods in Applied Sciences, Second Internat. Sympos., Versailles, 1975. Lecture Notes in Phys., vol. 58, pp. 207–216. Springer, Berlin (1976)

    Chapter  Google Scholar 

  18. Gopalakrishnan, J., Kanschat, G.: A multilevel discontinuous Galerkin method. Numer. Math. 95, 527–550 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guzmán, J.: Local analysis of discontinuous Galerkin methods applied to singularly perturbed problems. J. Numer. Math. 14, 41–56 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Harriman, K., Gavaghan, D., Süli, E.: The importance of adjoint consistency in the approximation of linear functional using the discontinuous Galerkin finite element method. Tech. Report NA-04-18, University of Oxford, The Mathematical Institute (2004). http://eprints.maths.ox.ac.uk/1172/

  21. Hartmann, R.: Adjoint consistency analysis of discontinuous Galerkin discretizations. SIAM J. Numer. Anal. 45, 2671–2696 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Heinkenschloss, M., Leykekhman, D.: Local error estimates for SUPG solutions of advection-dominated elliptic linear-quadratic optimal control problems. SIAM J. Numer. Anal. 47, 4607–4638 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Houston, P., Schwab, C., Süli, E.: Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39, 2133–2163 (2002) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  24. Johnson, C., Pitkäranta, J.: An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46, 1–26 (1986)

    Article  MATH  Google Scholar 

  25. Leykekhman, D., Heinkenschloss, M.: Local error analysis of discontinuous Galerkin methods for advection-dominated elliptic linear-quadratic optimal control problems (2011, submitted)

  26. Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  MATH  Google Scholar 

  27. Masud, A., Hughes, T.J.R.: A stabilized mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Eng. 191, 4341–4370 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Oliver, T.A., Darmofal, D.L.: Analysis of dual consistency for discontinuous Galerkin discretizations of source terms. SIAM J. Numer. Anal. 47, 3507–3525 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Frontiers in Applied Mathematics, vol. 35. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  30. Riviere, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Comput. Geosci. 8, 231–244 (1999)

    MathSciNet  Google Scholar 

  31. Zunino, P.: Discontinuous Galerkin methods based on weighted interior penalties for second order PDEs with non-smooth coefficients. J. Sci. Comput. 38, 99–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for suggestions that help improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy Leykekhman.

Additional information

This work was supported in part by the National Science Foundation (grant DMS-0811167).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leykekhman, D. Investigation of Commutative Properties of Discontinuous Galerkin Methods in PDE Constrained Optimal Control Problems. J Sci Comput 53, 483–511 (2012). https://doi.org/10.1007/s10915-012-9582-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9582-y

Keywords

Navigation