Skip to main content
Log in

Bregmanized Domain Decomposition for Image Restoration

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Computational problems of large-scale data are gaining attention recently due to better hardware and hence, higher dimensionality of images and data sets acquired in applications. In the last couple of years non-smooth minimization problems such as total variation minimization became increasingly important for the solution of these tasks. While being favorable due to the improved enhancement of images compared to smooth imaging approaches, non-smooth minimization problems typically scale badly with the dimension of the data. Hence, for large imaging problems solved by total variation minimization domain decomposition algorithms have been proposed, aiming to split one large problem into N>1 smaller problems which can be solved on parallel CPUs. The N subproblems constitute constrained minimization problems, where the constraint enforces the support of the minimizer to be the respective subdomain.

In this paper we discuss a fast computational algorithm to solve domain decomposition for total variation minimization. In particular, we accelerate the computation of the subproblems by nested Bregman iterations. We propose a Bregmanized Operator Splitting–Split Bregman (BOS-SB) algorithm, which enforces the restriction onto the respective subdomain by a Bregman iteration that is subsequently solved by a Split Bregman strategy. The computational performance of this new approach is discussed for its application to image inpainting and image deblurring. It turns out that the proposed new solution technique is up to three times faster than the iterative algorithm currently used in domain decomposition methods for total variation minimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Clarendon Press, Oxford (2000), p. xviii

    MATH  Google Scholar 

  2. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variation. Springer, Berlin (2002)

    Google Scholar 

  3. Bregman, L.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex optimization. U.S.S.R. Comput. Math. Math. Phys. 7, 200–217 (1967)

    Article  Google Scholar 

  4. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)

    MathSciNet  Google Scholar 

  5. Chambolle, A., Darbon, J.: On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84, 288–307 (2009)

    Article  Google Scholar 

  6. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daubechies, I., Defrise, M., DeMol, C.: An iterative thresholding algorithm for linear inverse problems. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daubechies, I., Teschke, G., Vese, L.: Iteratively solving linear inverse problems under general convex constraints. Inverse Probl. Theor. Imaging 1(1), 29–46 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Darbon, J., Sigelle, M.: A fast and exact algorithm for total variation minimization. In: IbPRIA 2005. Lecture Notes in Computer Science, vol. 3522, pp. 717–765 (2005)

    Google Scholar 

  12. Dobson, D., Vogel, C.R.: Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34(5), 1779–1791 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Engl, HW., Hanke, M., Neubauer, A.: Regularization of inverse problems. In: Mathematics and Its Applications (Dordrecht), vol. 375. Kluwer Academic Publishers, Dordrecht (1996)

    Google Scholar 

  14. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  15. Fornasier, M.: Domain decomposition methods for linear inverse problems with sparsity constraints. Inverse Probl. 23(6), 2505–2526 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fornasier, M., Langer, A., Schönlieb, C.-B.: A convergent overlapping domain decomposition method for total variation minimization. Numer. Math. 116(4), 645–685 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fornasier, M., Schönlieb, C.-B.: Subspace correction methods for total variation and 1-minimization. SIAM J. Numer. Anal. 47(4), 3397–3428 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frick, K., Scherzer, O.: Regularization of ill-posed linear equations by the non-stationary augmented Lagrangian method. J. Integral Equ. Appl. 22(2), 217–257 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Goldstein, T., Osher, S.: The split Bregman method for 1 regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28(1), 1–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. Advances in Design and Control, vol. 15. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  22. Langer, A.: Convergence analysis of a non-overlapping domain decomposition algorithm for total variation minimization. J. Comput. Appl. Math. (2009, submitted)

  23. Langer, A.: Subspace correction and domain decomposition methods for total variation minimization. PhD Thesis, Johannes Kepler University Linz (2011)

  24. Loris, I.: On the performance of algorithms for the minimization of 1-penalized functionals. Inverse Probl. 25, 035007 (2009)

    Article  MathSciNet  Google Scholar 

  25. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program., Ser. A 103, 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MATH  Google Scholar 

  28. Schönlieb, C.-B.: Total variation minimization with an H −1 constraint. In: Singularities in Nonlinear Evolution Phenomena and Applications Proceedings, Scuola Normale Superiore Pisa. CRM Series, vol. 9, pp. 201–232 (2009)

    Google Scholar 

  29. Setzer, S.: Split Bregman algorithm, Douglas–Rachford splitting and frame shrinkage. In: Tai, X.-C., et al. (eds.) Proceedings of the Second International Conference on Scale Space Methods and Proceedings of the 2nd International Conference on Scale Space and Variational Methods in Computer Vision. LNCS, vol. 5567, pp. 464–476. Springer, Berlin (2009)

    Chapter  Google Scholar 

  30. Vese, L.: A study in the BV space of a denoising-deblurring variational problem. Appl. Math. Optim. 44, 131–161 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for 1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Andreas Langer acknowledges the financial support provided by the FWF project Y 432-N15 START-Preis Sparse Approximation and Optimization in High Dimensions and the project WWTF Five senses-Call 2006, Mathematical Methods for Image Analysis and Processing in the Visual Arts. Stanley Osher acknowledges the NSF grants DMS0835863 and DMS0914561, the ONR grant N000140910360, and ARO Muri subs from Rice University and the University of South Carolina. Carola-Bibiane Schönlieb acknowledges the financial support provided by the Cambridge Centre for Analysis (CCA), the DFG Graduiertenkolleg 1023 Identification in Mathematical Models: Synergy of Stochastic and Numerical Methods and the Royal Society International Exchanges Award IE110314. Further, this publication is based on work supported by Award No. KUK-I1-007-43, made by King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Langer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langer, A., Osher, S. & Schönlieb, CB. Bregmanized Domain Decomposition for Image Restoration. J Sci Comput 54, 549–576 (2013). https://doi.org/10.1007/s10915-012-9603-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9603-x

Keywords