Abstract
We prove several new results of the C 0 finite element method introduced in (S.C. Brenner et al., Math. Comput. 80:1979–1995, 2011) for the fully nonlinear Monge-Ampère equation. These include the convergence of quadratic finite element approximations, W 2,p quasi-optimal error estimates, localized pointwise error estimates, and convergence of Newton’s method with explicit dependence on the discretization parameter. Numerical experiments are presented which back up the theoretical results.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975)
Bernardi, C.: Optimal finite element interpolation on curved domains. SIAM J. Numer. Anal. 26(5), 1212–1240 (1989)
Baginski, F.E., Whitaker, N.: Numerical solutions of boundary value problems for \(\mathcal {K}\)-surfaces in R 3. Numer. Methods Partial Differ. Equ. 12(4), 525–546 (1996)
Benamou, J., Brenier, Y.: Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampère/transport problem. SIAM J. Appl. Math. 58, 1450–1461 (1998)
Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46(3), 1212–1249 (2008)
Bramble, J.H., Pasciak, J.E., Schatz, A.H.: The construction of preconditioners for elliptic problems by substructuring I, Math. Comput. 47(175), 103–134 (1986)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, Berlin (2008)
Brenner, S.C.: Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003)
Brenner, S.C., Gudi, T., Neilan, M., Sung, L.-Y.: C 0 penalty methods for the Monge-Ampère equation. Math. Comput. 80, 1979–1995 (2011)
Brenner, S.C., Neilan, M.: Finite element approximations of the three dimensional Monge-Ampère equation. M2AN Math. Model. Numer. Anal. 46(5), 979–1001 (2012)
Caffarelli, L.A., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second-order elliptic equations I. Monge-Ampère equation. Commun. Pure Appl. Math. 37(3), 369–402 (1984)
Caffarelli, L.A., Milman, M.: Monge-Ampère Equation: Applications to Geometry and Optimization. American Mathematical Society, Providence (1999)
COMSOL Multiphysics Software Package, http://www.comsol.com
Chen, Z., Chen, H.: Pointwise error estimates of discontinuous Galerkin methods with penalty for second-order elliptic problems. SIAM J. Numer. Anal. 42(3), 1146–1166 (2004)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
Courant, R., Hilbert, D.: Methods of Mathematical Physics. Wiley, New York (1989)
Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: an augmented Lagrangian approach. C. R. Math. Acad. Sci. Paris 336(9), 779–784 (2003)
Dean, E.J., Glowinski, R.: Numerical solution of the two-dimensional elliptic Monge-Ampère equation with Dirichlet boundary conditions: a least-squares approach. C. R. Math. Acad. Sci. Paris 339(12), 887–892 (2004)
Dean, E.J., Glowinski, R.: An augmented Lagrangian approach to the numerical solution of the Dirichlet problem for the elliptic Monge-Ampère equation in two dimensions. Electron. Trans. Numer. Anal. 22, 71–96 (2006)
Dean, E.J., Glowinski, R.: Numerical methods for fully nonlinear elliptic equations of the Monge-Ampère type. Comput. Methods Appl. Mech. Eng. 195(13–16), 1344–1386 (2006)
Delzanno, G.L., Chacón, L., Finn, J.M., Chung, Y., Lapenta, G.: An optimal robust equidistribution method for two-dimensional grid adaptation based on Monge-Kantorovich optimization. J. Comput. Phys. 227(23), 9841–9864 (2008)
Demlow, A.: Sharply localized pointwise and \(W^{-1}_{\infty}\) estimates for finite element methods for quasilinear problems. Math. Comput. 76(260), 1725–1741 (2007)
Evans, L.C.: Partial Differential Equations and Monge-Kantorovich Mass Transfer, Current Developments in Mathematics, pp. 65–126. Int. Press, Boston (1999)
Feng, X., Neilan, M.: Vanishing moment method and moment solutions for second order fully nonlinear partial differential equations. J. Sci. Comput. 38(1), 74–98 (2009)
Feng, X., Neilan, M.: Mixed finite element methods for the fully nonlinear Monge-Ampère equation based on the vanishing moment method. SIAM J. Numer. Anal. 47(2), 1226–1250 (2009)
Feng, X., Neilan, M.: Analysis of Galerkin methods for the fully nonlinear Monge-Ampère equation. J. Sci. Comput. 47(3), 303–327 (2011)
Frisch, M., Matarrese, S., Mohayaee, R., Sobolevski, A.: A reconstruction of the initial conditions of the universe by optimal mass transportation. Nature 417, 260–262 (2002)
Froese, B.D., Oberman, A.M.: Convergent finite difference solvers for viscosity solutions of the elliptic Monge-Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49, 1692–1714 (2011)
Froese, B.D., Oberman, A.M.: Fast finite difference solvers for singular solutions of the elliptic Monge-Ampère equation. J. Comput. Phys. 230(3), 818–834 (2011)
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)
Guan, B., Spruck, J.: Boundary-value problems on S n for surfaces of constant Gauss curvature. Ann. Math. 138(3), 601–624 (1993)
Guan, B.: The Dirichlet problem for Monge-Ampère equations in non-convex domains and spacelike hypersurfaces of constant Gauss curvature. Trans. Am. Math. Soc. 350(12), 4955–4971 (1998)
Guan, B., Spruck, J.: The existence of hyper surfaces of constant Gauss curvature with prescribed boundary. J. Differ. Geom. 62(2), 259–287 (2002)
Gutierrez, C.E.: The Monge-Ampère Equation. Progress in Nonlinear Differential Equations and Their Applications, vol. 44. Birkhauser, Boston (2001)
Neilan, M.: Localized pointwise error estimates and global L p error estimates for Nietzsche’s method. Int. J. Numer. Anal. Model. Ser. B 2(4), 338–354 (2011)
Nitsche, J.A.: Über ein Variationspirinzip zur Lösung Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unteworfen sind. Abh. Math. Semin. Univ. Hamb. 36, 9–15 (1971)
Oberman, A.M.: Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst., Ser. B 10(1), 221–238 (2008)
Oliker, V.I., Prussner, L.D.: On the numerical solution of the equation (∂ 2 z/∂x 2)(∂ 2 z/∂y 2)−(∂ 2 z/∂x∂y)2=f and its discretizations. Numer. Math. 54(3), 271–293 (1988)
Schatz, A.H.: Interior maximum norm estimates for finite element methods, Part II. Math. Comput. 64, 907–928 (1995)
Schatz, A.H.: Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids, Part I. Global estimates. Math. Comput. 67(223), 877–899 (1998)
Trudinger, N.S., Wang, X.-J.: The Monge-Ampère equation and its geometric applications, vol. I. In: Handbook of Geometric Analysis, pp. 467–524. International Press, Somerwille (2008)
Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003)
Acknowledgements
The work of this author was supported by the National Science Foundation under grant number DMS-1115421.
The author would like to thank Susanne C. Brenner and Li-Yeng Sung for helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Neilan, M. Quadratic Finite Element Approximations of the Monge-Ampère Equation. J Sci Comput 54, 200–226 (2013). https://doi.org/10.1007/s10915-012-9617-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-012-9617-4