Skip to main content
Log in

A Characteristics Based Genuinely Multidimensional Discrete Kinetic Scheme for the Euler Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we present the results of a kinetic relaxation scheme for an arbitrary hyperbolic system of conservation laws in two space dimensions. We propose a new discrete velocity Boltzmann equation, which is an improvement over the previous models in terms of the isotropic coverage of the multidimensional domain by the foot of the characteristic. The discrete kinetic equation is solved by a splitting method consisting of a convection step and a collision step. The convection step involves only the solution of linear transport equations whereas the collision step instantaneously relaxes the distribution function to a local Maxwellian. An anti-diffusive Chapman-Enskog distribution is used to derive a second order accurate method. Finally some numerical results are presented which confirm the robustness and correct multidimensional behaviour of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aregba-Driollet, D., Natalini, R.: Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37, 1973–2004 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arun, K.R., Kraft, M., Lukáčová-Medviďová, M., Prasad, P.: Finite volume evolution Galerkin method for hyperbolic conservation laws with spatially varying flux functions. J. Comput. Phys. 228, 565–590 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arun, K.R., Lukáčová-Medviďová, M., Prasad, P., Raghurama Rao, S.V.: A second order accurate kinetic relaxation scheme for inviscid compressible flows. Technical report, Department of Mathematics, Indian Institute of Science, Bangalore, India (2010). Available from http://math.iisc.ernet.in/~prasad/

  4. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

    Article  MATH  Google Scholar 

  5. Bouchut, F.: Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Stat. Phys. 95, 113–170 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cercignani, C.: The Boltzmann Equation and Its Applications. Applied Mathematical Sciences, vol. 67. Springer, New York (1988)

    Book  MATH  Google Scholar 

  7. Chen, G.Q., Levermore, C.D., Liu, T.-P.: Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47, 787–830 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deshpande, S.M.: A second order accurate, kinetic-theory based, method for inviscid compressible flows. Technical report 2613 NASA, Langley (1986)

  9. Deshpande, S.M.: Kinetic flux splitting schemes. In: Hafez, M., Oshima, K. (eds.) Computational Fluid Dynamics Review 1995: A State-of-the-Art Reference to the Latest Developments in CFD. Wiley, New York (1995)

    Google Scholar 

  10. Fey, M.: Multidimensional upwinding. I. The method of transport for solving the Euler equations. J. Comput. Phys. 143, 159–180 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fey, M.: Multidimensional upwinding. II. Decomposition of the Euler equations into advection equations. J. Comput. Phys. 143, 181–199 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences, vol. 118. Springer, New York (1996)

    MATH  Google Scholar 

  13. Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. AIAA Paper 81-1259 (1981)

  14. Jin, S.: Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122, 51–67 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jin, S., Xin, Z.P.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48, 235–276 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kunik, M., Qamar, S., Warnecke, G.: Second-order accurate kinetic schemes for the ultra-relativistic Euler equations. J. Comput. Phys. 192, 695–726 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Langseth, J.O., LeVeque, R.J.: A wave propagation method for three-dimensional hyperbolic conservation laws. J. Comput. Phys. 165, 126–166 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  19. LeVeque, R.J., Walder, R.: Grid alignment effects and rotated methods for computing complex flows in astrophysics. In: Proceedings of the Ninth GAMM-Conference on Numerical Methods in Fluid Mechanics, Lausanne, 1991. Notes Numer. Fluid Mech., vol. 35, pp. 376–385. Vieweg, Wiesbaden (1992)

    Google Scholar 

  20. Liu, T.-P.: Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108, 153–175 (1987)

    Article  MATH  Google Scholar 

  21. Lukáčová-Medviďová, M., Morton, K.W., Warnecke, G.: Finite volume evolution Galerkin (FVEG) methods for hyperbolic problems. SIAM J. Sci. Comput. 26, 1–30 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Natalini, R.: Recent results on hyperbolic relaxation problems. In: Analysis of Systems of Conservation Laws, Aachen, 1997. Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math., vol. 99, pp. 128–198. Chapman & Hall/CRC, Boca Raton (1999)

    Google Scholar 

  23. Noelle, S.: The MoT-ICE: a new high-resolution wave-propagation algorithm for multidimensional systems of conservation laws based on Fey’s method of transport. J. Comput. Phys. 164, 283–334 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Noelle, S.W.C.: On the limits of operator splitting: numerical experiments for the complex Burgers equation. Technical report tr-91-03, Konrad-Zuse-Zentrum für Informationstechnik, Berlin (1991)

  25. Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Perthame, B.: Boltzmann type schemes for gas dynamics and the entropy property. SIAM J. Numer. Anal. 27, 1405–1421 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Perthame, B.: Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions. SIAM J. Numer. Anal. 29, 1–19 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Roe, P.L.: Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics. J. Comput. Phys. 63, 458–476 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shubin, G.R., Bell, J.B.: An analysis of the grid orientation effect in numerical simulation of miscible displacement. Comput. Methods Appl. Mech. Eng. 47, 47–71 (1984)

    Article  MATH  Google Scholar 

  30. Tadmor, E.: Approximate solutions of nonlinear conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Cetraro, 1997. Lecture Notes in Math., vol. 1697, pp. 1–149. Springer, Berlin (1998)

    Chapter  Google Scholar 

  31. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, K.: Gas kinetic scheme for unsteady compressible flow simulations. In: Lecture Note Series 1998-03. Von Kárman Institute for Fluid Dynamics, Rhode Saint Genèse (1998)

    Google Scholar 

Download references

Acknowledgements

The authors thank Professors Sebastian Noelle and Phoolan Prasad for their constant encouragement and support. They also wish to thank the anonymous reviewers for their valuable suggestions to improve the quality of the paper. K.R.A. is supported by the Alexander von Humboldt Foundation through a postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Arun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arun, K.R., Lukáčová-Medviďová, M. A Characteristics Based Genuinely Multidimensional Discrete Kinetic Scheme for the Euler Equations. J Sci Comput 55, 40–64 (2013). https://doi.org/10.1007/s10915-012-9623-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9623-6

Keywords

Navigation