Skip to main content
Log in

A New Nonsymmetric Discontinuous Galerkin Method for Time Dependent Convection Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a discontinuous Galerkin finite element method for convection diffusion equations that involves a new methodology handling the diffusion term. Test function derivative numerical flux term is introduced in the scheme formulation to balance the solution derivative numerical flux term. The scheme has a nonsymmetric structure. For general nonlinear diffusion equations, nonlinear stability of the numerical solution is obtained. Optimal kth order error estimate under energy norm is proved for linear diffusion problems with piecewise P k polynomial approximations. Numerical examples under one-dimensional and two-dimensional settings are carried out. Optimal (k+1)th order of accuracy with P k polynomial approximations is obtained on uniform and nonuniform meshes. Compared to the Baumann-Oden method and the NIPG method, the optimal convergence is recovered for even order P k polynomial approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001) (electronic)

    Article  MathSciNet  Google Scholar 

  3. Baker, G.A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31, 45–59 (1977)

    Article  MATH  Google Scholar 

  4. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Eng. 175(3–4), 311–341 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Texts in Applied Mathematics, vol. 15. Springer, New York (2002)

    Book  MATH  Google Scholar 

  7. Brenner, S.C., Owens, L., Sung, L.-Y.: A weakly over-penalized symmetric interior penalty method. Electron. Trans. Numer. Anal. 30, 107–127 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Carey, G.F., Shen, Y.: Least-squares finite element approximation of Fisher’s reaction-diffusion equation. Numer. Methods Partial Differ. Equ. 11(2), 175–186 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E.: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697. Springer, Berlin (1998). Papers from the C.I.M.E. Summer School held in Cetraro, June 23–28, 1997, Edited by Alfio Quarteroni, Fondazione C.I.M.E. [C.I.M.E. Foundation]

    Book  MATH  Google Scholar 

  13. Cockburn, B., Karniadakis, G.E., Shu, C.-W.: The development of discontinuous Galerkin methods. In: Discontinuous Galerkin Methods, Newport, RI, 1999. Lect. Notes Comput. Sci. Eng., vol. 11, pp. 3–50. Springer, Berlin (2000)

    Chapter  Google Scholar 

  14. Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193(23–26), 2565–2580 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gassner, G., Lörcher, F., Munz, C.D.: A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes. J. Comput. Phys. 224(2), 1049–1063 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47(1), 475–698 (2009)

    Article  Google Scholar 

  18. Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections. Commun. Comput. Phys. 8(3), 541–564 (2010)

    MathSciNet  Google Scholar 

  19. Liu, Y., Shu, C.-W., Zhang, M.: High order finite difference WENO schemes for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 33(2), 939–965 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oden, J.T., Babuška, I., Baumann, C.E.: A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146(2), 491–519 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  22. Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39(3), 902–931 (2001) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shu, C.-W.: Different formulations of the discontinuous Galerkin method for the viscous terms. In: Shi, Z.-C., Mu, M., Xue, W., Zou, J. (eds.) Advances in Scientific Computing, pp. 144–155. Science Press, Beijing (2001)

    Google Scholar 

  24. Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. II. J. Comput. Phys. 83(1), 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. van Leer, B., Nomura, S.: Discontinuous Galerkin for diffusion. In: Proceedings of 17th AIAA Computational Fluid Dynamics Conference, June 6 2005, AIAA-2005-5108 (2005)

    Google Scholar 

  27. Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jue Yan.

Additional information

Dedicated to Stanley Osher’s 70’s birthday.

The research of this author is supported by NSF grant DMS-0915247.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, J. A New Nonsymmetric Discontinuous Galerkin Method for Time Dependent Convection Diffusion Equations. J Sci Comput 54, 663–683 (2013). https://doi.org/10.1007/s10915-012-9637-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9637-0

Keywords

Navigation