Skip to main content
Log in

A Non-oscillatory Central Scheme for One-Dimensional Two-Layer Shallow Water Flows along Channels with Varying Width

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a new high-resolution, non-oscillatory semi-discrete central scheme for one-dimensional two-layer shallow-water flows along channels with non-uniform rectangular cross sections and bottom topography. The scheme extends existing central semi-discrete schemes for hyperbolic conservation laws and it enjoys two properties crucial for the accurate simulation of shallow-water flows: it preserves the positivity of the water height, and it is well balanced, i.e., the source terms arising from the geometry of the channel are discretized so as to balance the non-linear hyperbolic flux gradients. Along with a detailed description of the scheme and proofs of these two properties, we present several numerical experiments that demonstrate the robustness of the numerical algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abgrall, R., Karni, S.: Two-layer shallow water system: a relaxation approach. SIAM J. Sci. Comput. 31(3), 1603–1627 (2009). doi:10.1137/06067167X

    Article  MathSciNet  MATH  Google Scholar 

  2. Armi, L.: The hydraulics of two flowing layers with different densities. J. Fluid Mech. 163, 27–60 (1986)

    Article  MathSciNet  Google Scholar 

  3. Armi, L., Farmer, D.: Maximal two-layer exchange through a contraction with barotropic net flow. J. Fluid Mech. 186, 27–51 (1986)

    Google Scholar 

  4. Balbás, J., Karni, S.: A central scheme for shallow water flows along channels with irregular geometry. Modél. Math. Anal. Numér. 43(2), 333–351 (2009). doi:10.1051/m2an:2008050

    Article  MATH  Google Scholar 

  5. Balbas, J., Tadmor, E.: Nonoscillatory central schemes for one- and two-dimensional magnetohydrodynamics equations. ii: High-order semidiscrete schemes. SIAM J. Sci. Comput. 28(2), 533–560 (2006). doi:10.1137/040610246. http://link.aip.org/link/?SCE/28/533/1

    Article  MathSciNet  MATH  Google Scholar 

  6. Balbás, J., Tadmor, E., Wu, C.C.: Non-oscillatory central schemes for one- and two-dimensional MHD equations. I. J. Comput. Phys. 201(1), 261–285 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castro, M.J., García-Rodríguez, J.A., González-Vida, J.M., Macías, J., Parés, C., Vázquez-Cendón, M.E.: Numerical simulation of two-layer shallow water flows through channels with irregular geometry. J. Comput. Phys. 195(1), 202–235 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farmer, D., Armi, L.: Maximal two-layer exchange over a sill and through the combination of a sill and contraction with barotropic flow. J. Fluid Mech. 164, 53–76 (1986)

    Article  MATH  Google Scholar 

  9. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  10. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang, G.S., Levy, D., Lin, C.T., Osher, S., Tadmor, E.: High-resolution nonoscillatory central schemes with nonstaggered grids for hyperbolic conservation laws. SIAM J. Numer. Anal. 35(6), 2147–2168 (1998) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kurganov, A., Levy, D.: A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput. 22(4), 1461–1488 (2000) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kurganov, A., Levy, D.: Central-upwind schemes for the Saint-Venant system. Modél. Math. Anal. Numér. 36(3), 397–425 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23(3), 707–740 (2001) (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurganov, A., Petrova, G.: A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system. Commun. Math. Sci. 5(1), 133–160 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Kurganov, A., Petrova, G.: Central-upwind schemes for two-layer shallow water equations. SIAM J. Sci. Comput. 31(3), 1742–1773 (2009). doi:10.1137/080719091

    Article  MathSciNet  MATH  Google Scholar 

  17. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  19. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 135(2), 227–248 (1997). J. Comput. Phys. 32(1), 101–136 (1979)

    Article  MathSciNet  Google Scholar 

  20. Levy, D., Puppo, G., Russo, G.: A third order central WENO scheme for 2D conservation laws. Appl. Numer. Math. 33(1–4), 415–421 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mabe, N.: Steady-state solutions to shallow-water flows along channels with varying geometry. Master’s thesis, California State University, Northridge, US (2010)

  22. Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Russo, G.: Central schemes for balance laws. In: Hyperbolic problems: theory, numerics, applications, vols. I, II, Magdeburg, 2000. Internat. Ser. Numer. Math., vols. 140, 141, pp. 821–829. Birkhäuser, Basel (2001)

    Chapter  Google Scholar 

  25. Shu, C.W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. II. J. Comput. Phys. 83(1), 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vázquez-Cendón, M.E.: Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 148(2), 497–526 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wetzel, A.: Properties of steady-state solutions for shallow water flows. Tech. Rep., University of Michigan, Ann Arbor, Department of Mathematics (2007)

  28. Wetzel, A.: Properties of steady-state solutions for critical two-layer shallow water flows. Tech. Rep., University of Michigan, Ann Arbor, Department of Mathematics (2008)

Download references

Acknowledgements

This work was partially supported by NSF award DMS # 0609766

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Balbás.

Appendices

Appendix A: Proof of Theorem 1

Proof

(i) Starting with the initial conditions u i (x)=0 (i=1,2), w 1(x)=W 1 and h 2(x)=H 2 for all x, we fix a space scale Δx and the corresponding partition of the solution domain, \(\{ I_{j} \} := \{ [x_{j - \frac{1}{2}}, x_{j + \frac{1}{2}}] \} \). We then define the cell averages of the conserved quantities in the modified shallow-water model, (15a)–(15d), as

$$ \overline{A}^T_{1,j} := \overline{ \sigma}_j \overline{w}_{1,j} = \overline{\sigma }_j W_1 \quad\mbox{and}\quad A_{2,j} := \overline{\sigma}_j \overline{h}_{2,j}= \overline{\sigma}_j H_2 $$
(86)

and

(87a)
(87b)

The reconstructed point values of w 1 and h 2, clearly satisfy \(w_{1, j \pm\frac{1}{2}}^{\pm} = W_{1}\), \(h_{2,j\pm\frac {1}{2}} = H_{2}\), and those of Q i , \(Q_{j \pm\frac{1}{2}}^{\pm} = 0\) (i=1,2), thus the values of the water heights (38) (and the corresponding values of h 2 recovered via the minmod reconstruction), and those of the bottom topography at the cell interfaces, \(B_{j \pm \frac{1}{2}}^{\mp}\), satisfy

$$ h_{1,j + \frac{1}{2}}^{-} - h_{1,j - \frac{1}{2}}^{+} = - \bigl( B_{j + \frac{1}{2} }^{-} - B_{j - \frac{1}{2}}^{+} \bigr) \quad\mbox{and}\quad h_{2,j + \frac{1}{2}}^{-} - h_{2,j - \frac{1}{2}}^{+} = 0 $$
(88)

In view of this, the first and third components of the numerical fluxes \(H_{j + \frac{1}{2}}\) in (22) read

(89a)
(89b)

That is,

(90a)
(90b)

which allows us to recover \(\overline{w}_{1,j} (t + \Delta t)= W_{1}\) and h 2,j (tt)=H 2 exactly from (86).

Noting that, according to (38), \(h_{1,j+\frac{1}{2}}^{+} = h_{1,j+\frac{1}{2}}^{-} =: h_{1,j+\frac{1}{2}}\) and that the minmod reconstruction guarantees \(h_{2,j+\frac{1}{2}}^{+} = h_{2,j+\frac {1}{2}}^{-} =: h_{2,j+\frac{1}{2}}\), the second and fourth components of the numerical flux amount, respectively, to (40) and (41), and since (88) hold, they are balanced by (48)–(51), therefore

$$ \frac{d}{d t} \overline{Q}_{i,j} (t) = 0 \quad\Rightarrow\quad \overline{Q}_{i,j} (t + \Delta t) = \overline{Q}_{i,j} (t) = 0,\quad i = 1,2. $$
(91)

and u i,j (tt)≡0 (i=1,2) are also recovered exactly.

(ii) We begin by writing explicitly the cell average \(A^{T}_{1,j}(t + \Delta t)\) when the system (22) is evolved with forward Euler’s ODE solver,

$$ \overline{A}^T_{1,j}(t + \Delta t) = \overline{A}^T_{1,j}(t) - \lambda \bigl[ H_{j + \frac{1}{2}}^{(1)}(t) - H_{j - \frac{1}{2}}^{(1)}(t) \bigr], $$
(92)

where λtx. This amounts to

(93)

(where all the terms on the right hand side are understood to be evaluated at time t). Using \(Q_{1,j \pm\frac{1}{2}}^{\pm} = \sigma_{j \pm\frac{1}{2}}^{\pm} h_{1,j \pm\frac{1}{2}}^{\pm} u_{1,j \pm \frac{1}{2}}^{\pm }\), we write

(94)

The terms involving \(\sigma_{j \pm\frac{1}{2}} B_{j \pm\frac {1}{2}}^{\pm}\) and \(\sigma_{j \pm\frac{1}{2}} B_{j \pm\frac{1}{2}}^{\mp}\) on the right hand side cancel, and since \(a_{j \pm\frac{1}{2}}\sigma_{j \pm\frac {1}{2}} \geq |u_{1,j \pm\frac{1}{2}}^{\pm}| \sigma_{j \pm\frac{1}{2}}^{\pm }\), (58), and \(h_{1,j \pm\frac{1}{2}}^{\mp} \geq0\), the CFL restriction (63) allows us to write

$$ \overline{A}^T_{1,j}(t + \Delta t) \geq \overline{A}^T_{1,j}(t) - \frac{1}{2} \overline {\sigma}_j \bigl(h_{1,j + \frac{1}{2}}^- + h_{1,j - \frac{1}{2}}^+ \bigr) = \overline{\sigma}_j \overline{B}_j, $$
(95)

from where (64) follows. □

Appendix B: On the Semi-Discrete Central Formulation for Hyperbolic Systems with Source Terms

The numerical scheme that we have presented in this work is based on the high-order semi-discrete central formulation for hyperbolic conservation laws first introduced in [17]. Here we outline the derivation of the equivalent semi-discrete formulation for hyperbolic systems with source terms,

$$ v_t + f(v)_x = S(v,x) $$
(96)

Before we proceed, we should clarify that this derivation consists of three steps: staggered evolution of cell averages, reprojection onto the original non-staggered grid, and the evaluation of the limit as Δt→0 of the finite difference \((\overline {v}^{n+1}_{j} - \overline{v}^{n}_{j}) /\Delta t\). A process that requires the formulation of several intermediate solutions presented below, however, for the actual implementation of the semi-discrete scheme one doesn’t need to calculate these solutions; the intermediate solutions are only introduced formally so as to form the finite difference and take the limit.

Starting with the cell averages \(\{ \overline{v}^{n}_{j} \}_{j}\) over the partition \(\{ I_{j} \}_{j} = \{ [x_{j -\frac{1}{2}}, x_{j + \frac{1}{2}}] \}_{j}\) at time t=t n, we use the estimates of the maximum speed of propagation, \(a_{j + \frac{1}{2}}^{n}\), to define

$$ x_{j \pm\frac{1}{2},l}^n := x_{j \pm\frac{1}{2}} - a_{j \pm\frac {1}{2}}^n \Delta t \quad\mbox{and}\quad x_{j \pm\frac{1}{2},r}^n := x_{j \pm\frac{1}{2}} + a_{j \pm\frac{1}{2}}^n \Delta t, $$
(97)

and with these values we repartition the computational domain into two sets of cells: the first set,

$$\{ \tilde{I}_{j \pm\frac{1}{2}} \}_j = \bigl\{ \bigl[x_{j \pm\frac {1}{2},l}^n, x_{j \pm \frac{1}{2},r}^n\bigr] \bigr\}_j, $$

contains the neighborhood of the interfaces \(x_{j \pm\frac{1}{2}}\) within which discontinuous solutions propagate, the second set,

$$\{ \tilde{I_{j}} \}_j = \bigl\{ \bigl[x_{j - \frac{1}{2},r}^n, x_{j + \frac {1}{2},l}^n\bigr] \bigr\}_j, $$

contains the portion of the original cells where the solution remains smooth over the interval [t n,t n+1] (consult Fig. 12). We then formulate two sets of staggered cell averages following the recipe in [11] (a non-staggered extension of the original NT scheme proposed in [22]) including, in our case, the contribution from the source term. These two sets of solutions read:

(98)
(99)

where \(\lambda= \frac{\Delta t}{\Delta x}\). The midpoint values \(v^{n + \frac{1}{2}}(x)\) are approximated using Taylor’s theorem and the balance law (96),

$$ v^{n+\frac{1}{2}}(x) \approx v^n(x) + \frac{\Delta t}{2} v_t^n(x) \approx v^n(x) - \frac{\Delta t}{2} \bigl[ f\bigl(v^n(x)\bigr)_x - S \bigl(v^n(x), x\bigr) \bigr], $$
(100)

the numerical derivatives \((u_{x})_{j}^{n}\) via a minmod limiter,

$$ (v_x)_j^n = \frac{1}{\Delta x} \mathrm{minmod} \bigl( \overline {v}^n_{j + 1} - \overline{v}^n_j, \overline{v}^n_j - \overline{v}^n_{j - 1} \bigr), $$
(101)

and the flux derivatives can be calculated as f(v n(x)) x =A(v)v x , where \(A(v) = \frac{df}{dv}\) is the Jacobian matrix of f, or component by component as

$$ f\bigl(v^n(x)\bigr)_x = \frac{1}{\Delta x} \mathrm{minmod} \bigl( f\bigl(v^n(x + \Delta x)\bigr) - f \bigl(v^n(x)\bigr), f\bigl(v^n(x)\bigr) - f \bigl(v^n(x - \Delta x)\bigr) \bigr). $$
(102)

A well-balance discretization of the integrals on the right hand side of (98) can be found in [24].

Fig. 12
figure 12

Modified staggered central differencing and evolution

From these staggered averages, we form the interpolant

$$ R\bigl(x,t^{n+1}\bigr) = \sum _j \bigl\{ \bigl[\overline{\omega}_{j + \frac {1}{2}}^{n + 1} + (v_x)_{j + \frac{1}{2}}^{n + 1} (x - x_{j + \frac{1}{2}})\bigr] { \mathbf{1}}_{\bigl[x_{j+\frac{1}{2}, l}^n, x_{j+\frac{1}{2}, r}^n\bigr]} + \overline {\omega }_{j}^{n + 1} { \mathbf{1}}_{\bigl[x_{j-\frac{1}{2}, r}^n, x_{j+\frac{1}{2}, l}^n\bigr]} \bigr\} $$
(103)

where the derivatives \((v_{x})_{j \pm\frac{1}{2}}^{n + 1}\) are also approximated with a minmod limiter

$$ (v_x)_{j + \frac{1}{2}}^{n + 1} = \frac{2}{\Delta x} \mathrm {minmod} \biggl(\frac {\overline{\omega}_{j + 1}^{n+1} - \overline{\omega}_{j + \frac{1}{2} }^{n + 1}}{1 + \lambda(a_{j + \frac{1}{2}}^n - a_{j + \frac{3}{2}}^n)}, \frac{\overline{\omega}_{j + \frac{1}{2}}^{n+1} - \overline{\omega }_{j}^{n +1}}{1 + \lambda(a_{j - \frac{1}{2}}^n - a_{j + \frac {1}{2}}^n)} \biggr). $$
(104)

This interpolant is then reprojected onto the original (non-staggered) grid, obtaining the updated, non-staggered cell averages

(105)

In order to arrive at the semi-discrete formulation from (105), we consider the limit

$$ \frac{d}{dt} \overline{v}_j(t) = \lim_{\Delta t \rightarrow0} \frac {\overline{v}_j^{n+1} - \overline{v}_j^{n}}{\Delta t}. $$
(106)

To evaluate it, we write explicitly the finite difference using (105),

(107)

and expand it making use of (98) and (99)

(108)

In the limit Δt→0, the midpoint interface values approach

(109)

and we obtain (22)–(23)

(110)

with \(H_{j \pm\frac{1}{2}}\) given by (19) as desired.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balbás, J., Karni, S. A Non-oscillatory Central Scheme for One-Dimensional Two-Layer Shallow Water Flows along Channels with Varying Width. J Sci Comput 55, 499–528 (2013). https://doi.org/10.1007/s10915-012-9642-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9642-3

Keywords

Navigation