Abstract
We investigate the performance of the Mimetic Finite Difference (MFD) method for the approximation of a constraint optimal control problem governed by an elliptic operator. Low-order and high-order mimetic discretizations are considered and a priori error estimates are derived, in a suitable discrete norm, for both the control and the state variables. A wide class of numerical experiments performed on a set of examples selected from the literature assesses the robustness of the MFD method and confirms the convergence analysis.






Similar content being viewed by others
References
Antonietti, P.F., Beirão da Veiga, L., Lovadina, C., Verani, M.: Hierarchical a posteriori error estimators for the mimetic discretization of elliptic problems. MOX Rep. 33 (2011). Submitted for publication
Antonietti, P.F., Beirão da Veiga, L., Verani, M.: A mimetic discretization of elliptic obstacle problems. Math. Comput. To appear
Arada, N., Casas, E., Tröltzsch, F.: Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23(2), 201–229 (2002)
Beirão da Veiga, L.: A mimetic discretization method for linear elasticity. Modél. Math. Anal. Numér. 44(2), 231–250 (2010)
Beirão da Veiga, L., Lipnikov, K.: A mimetic discretization of the Stokes problem with selected edge bubbles. SIAM J. Sci. Comput. 32(2), 875–893 (2010)
Beirão da Veiga, L., Manzini, G.: An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems. Int. J. Numer. Methods Eng. 76(11), 1696–1723 (2008)
Beirão da Veiga, L., Gyrya, V., Lipnikov, K., Manzini, G.: Mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228(19), 7215–7232 (2009)
Beirão da Veiga, L., Lipnikov, K., Manzini, G.: Convergence analysis of the high-order mimetic finite difference method. Numer. Math. 113(3), 325–356 (2009)
Beirão da Veiga, L., Lipnikov, K., Manzini, G.: Error analysis for a mimetic discretization of the steady Stokes problem on polyhedral meshes. SIAM J. Numer. Anal. 48(4), 1419–1443 (2010)
Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37(4), 1176–1194 (1999) (electronic)
Berrone, S., Verani, M.: A new marking strategy for the adaptive finite element approximation of optimal control constrained problems. Optim. Methods Softw. 26(4–5), 747–775 (2011)
Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, Berlin (1994)
Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005) (electronic)
Brezzi, F., Lipnikov, K., Simoncini, V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15(10), 1533–1551 (2005)
Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci. 16(2), 275–297 (2006)
Brezzi, F., Buffa, A., Lipnikov, K.: Mimetic finite differences for elliptic problems. Modél. Math. Anal. Numér. 43(2), 277–295 (2009)
Cangiani, A., Manzini, G., Russo, A.: Convergence analysis of the mimetic finite difference method for elliptic problems. SIAM J. Numer. Anal. 47(4), 2612–2637 (2009)
Casas, E., Tröltzsch, F.: Error estimates for linear-quadratic elliptic control problems. In: Analysis and Optimization of Differential Systems (Constanta, 2002), pp. 89–100. Kluwer Academic, Boston (2003)
Chen, Y.: Superconvergence of quadratic optimal control problems by triangular mixed finite element methods. Int. J. Numer. Methods Eng. 75(8), 881–898 (2008)
Chen, Y., Huang, Y., Liu, W., Yan, N.: Error estimates and superconvergence of mixed finite element methods for convex optimal control problems. J. Sci. Comput. 42(3), 382–403 (2010)
Deng, K., Chen, Y., Lu, Z.: Higher order triangular mixed finite element methods for semilinear quadratic optimal control problem. Numer. Math. Theor. Meth. Appl. 4(2), 180–196 (2011)
Evans, G., Blackledge, J., Yardley, P.: Numerical Methods for Partial Differential Equations. Springer Undergraduate Mathematics Series. Springer, London (2000)
Falk, R.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)
Falk, R.S.: Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28, 963–971 (1974)
Geveci, T.: On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO. Anal. Numér. 13(4), 313–328 (1979)
Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. Comput. Optim. Appl. 30(1), 45–61 (2005)
Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications, vol. 23. Springer, New York (2009)
Lie, R., Ma, H., Liu, S., Yan, N., Tang, T.: Theory and algorithm to optimal control problem (2005). http://dsec.pku.edu.cn/~rli/research/doc/html/ocp_e.html
Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, New York (1971). Translated from the French by S.K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band 170
Lipnikov, K., Morel, J., Shashkov, M.: Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes. J. Comput. Phys. 199(2), 589–597 (2004)
Lipnikov, K., Moulton, J., Svyatskiy, D.: A multilevel multiscale mimetic (M3) method for two-phase flows in porous media. J. Comput. Phys. 227, 6727–6753 (2008)
Lipnikov, K., Shashkov, M., Yotov, I.: Local flux mimetic finite difference methods. Numer. Math. 112(1), 115–152 (2009)
Lipnikov, K., Manzini, G., Brezzi, F., Buffa, A.: The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes. J. Comput. Phys. 230(2), 305–328 (2011)
Liska, R., Shashkov, M., Ganza, V.: Analysis and optimization of inner products for mimetic finite difference methods on triangular grid. Math. Comput. Simul. 67, 55–66 (2004)
Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43(3), 970–985 (2004) (electronic)
Rösch, A.: Error estimates for linear-quadratic control problems with control constraints. Optim. Methods Softw. 21(1), 121–134 (2006)
Tröltzsch, F.: Optimal control of partial differential equations. In: Theory, Methods and Applications. Graduate Studies in Mathematics, vol. 112. Am. Math. Soc., Providence (2010). Translated from the 2005 German original by Jürgen Sprekels
Acknowledgements
We would like to thank the anonymous Referee for his/her valuable suggestions. This work was partially supported by Azione Integrata Italia-Spagna through the project IT097ABB10.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Antonietti, P.F., Bigoni, N. & Verani, M. Mimetic Discretizations of Elliptic Control Problems. J Sci Comput 56, 14–27 (2013). https://doi.org/10.1007/s10915-012-9659-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-012-9659-7