Skip to main content
Log in

Weak Convergence of Finite Element Method for Stochastic Elastic Equation Driven By Additive Noise

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we study the weak convergence of the semidiscrete and full discrete finite element methods for the stochastic elastic equation driven by additive noise, based on \(C^0\) or \(C^1\) piecewise polynomials. In order to simplify the analysis of weak convergence, we rewrite the stochastic elastic equation in an abstract problem and the solutions of the semidiscrete and full discrete problems in a unified form. We obtain that the weak order is twice the strong order, both in time and in space. Numerical experiments are carried out to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allen, E.J., Novosel, S.J., Zhang, Z.: Finite element and difference approximation of some linear stochastic partial differential equations. Stoch. Stoch. Rep. 64(1–2), 117–142 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Barth, A.: A finite element method for martingale-driven stochastic partial differential equations. Comm. Stoch. Anal. 4(3), 355–375 (2010)

    MathSciNet  Google Scholar 

  3. Bouard, A.D., Debussche, A.: A semi-discrete scheme for the stochastic nonlinear Schr\(\ddot{o}\)dinger equation. Numer. Math. 96, 733–770 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bouard, A.D., Debussche, A.: Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schr\(\ddot{o}\)dinger equation. Appl. Math. Optim. 54(3), 369–399 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  6. Brzezniak, Z., Maslowski, B., Seidler, J.: Stochastic nonlinear beam equations. Probab. Theory Relat. Fields 132, 119–149 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, Y.Z., Yang, H.T., Yin, L.: Finite element methods for semilinear elliptic stochastic partial differential equations. Numer. Math. 106, 181–198 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, Y.Z.: Finite element and discontinuous Galerkin method for stochastic Helmholtz equations in two- and three-dimensions. J. Comput. Math. 26(5), 702–715 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Chow, P.L., Menaldi, J.L.: Stochastic PDE for nonlinear vibration of elastic panels. Differ. Int. Equ. 12(3), 419–434 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Methods for Elliptic Problems. North-Holland, New York (1978)

    Google Scholar 

  11. Davie, A.M., Gaines, J.G.: Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations. Math. Comput. 70(233), 121–134 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Debussche, A.: Weak approximation of stochastic partial differential equations: the nonlinear case. Math. Comput. 80, 89–117 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Debussche, A., Printems, J.: Weak order for the discretization of the stochastic heat equation. Math. Comput. 78, 845–863 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Du, Q., Zhang, T.Y.: Numerical approximation of some linear stochastic partial differential equations driven by special additive noise. SIAM J. Numer. Anal. 40, 1421–1445 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Geissert, M.: M. Kov\(\acute{a}\)cs and S. Larsson, Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise, BIT. Numer. Math. 49, 343–356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Georgios, T.K., Georgios, E.Z.: Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise ESAIM. Math Model Numer Anal 44, 289–322 (2010)

    Article  MATH  Google Scholar 

  17. Gyongy, I., Millet, A.: On discretization schemes for stochastic evolution equations. Potential Anal 23, 99–134 (2005)

    Article  MathSciNet  Google Scholar 

  18. Gyongy, I., Millet, A.: Rate of convergence of space time approximations for stochastic evolution equations. Potential Anal. 30, 29–64 (2009)

    Article  MathSciNet  Google Scholar 

  19. Hausenblas, E.: Weak approximation of the stochastic wave equation. J. Comput. Appl. Math. 235, 33–58 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jentzen, A., Kloeden, P.E.: The numerical approximation of stochastic partial differential equations. Milan J. Math. 77(1), 205–244 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kim, J.U.: On a stochatic plate equation. Appl. Math. Optim. 44, 33–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kovacs, M., Larsson, S., Saedpanah, F.: Finite element approximation of the linear stochastic wave equation with additive noise. SIAM J. Numer. Anal. 48, 408–427 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kov\(\acute{a}\)cs. M., Larsson, S., Lindgren F.: Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise. BIT Numer. Math. http://www.springerlink.com/content/f708556177846274/

  24. Lord, G.J., Tambue A.: A modified semi-implicit full-Maruyama scheme for finite element discretization of SPDEs, http://arxiv.org/abs/1004.1998

  25. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 of Applied Mathematical Sciences. Springer, New York (1983)

    Book  Google Scholar 

  26. Prato, G.D., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, in Encyclopedia of Mathematics and Its Application. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  27. Printems, J.: On the discretization in time of parabolic stochastic partial differential equations. Monte Carlo Methods Appl. 7, 359–368 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qi, R.S., Yang, X.Y., Zhang, Y.H.: Full-discrete finite element method for stochastic elastic equaiton driven by additive noise, summited

  29. Shardlow, T.: Numerical methods for stochastic parabolic PDEs. Numer. Funct. Anal. Optim. 20, 121–145 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics. Springer, New York (1997)

    Book  Google Scholar 

  31. Yan, Y.: Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise. BIT Numer. Math. 44, 829–847 (2004)

    Article  MATH  Google Scholar 

  32. Yan, Y.: Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43(4), 1363–1384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, T.: Large deviations for stochastic nonlinear beam equations. J. Funct. Anal. 248, 175–201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author thanks the anonymous referees whose constructive criticism helped improve this article. This research was supported the National Key Basic Research Program (973) of China under Grant 2009CB724001 and National Natural Science Foundation of China under Grant 61271010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, R., Yang, X. Weak Convergence of Finite Element Method for Stochastic Elastic Equation Driven By Additive Noise. J Sci Comput 56, 450–470 (2013). https://doi.org/10.1007/s10915-013-9683-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9683-2

Keywords