Skip to main content
Log in

Fast Fourier-Galerkin Methods for Nonlinear Boundary Integral Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop in this paper a fast Fourier-Galerkin method for solving the nonlinear integral equation which is reformulated from a class of nonlinear boundary value problems. By projecting the nonlinear term onto the approximation subspaces, we make the Fourier-Galerkin method more efficient for solving the nonlinear integral equations. A fast algorithm for solving the resulting discrete nonlinear system is designed by integrating together the techniques of matrix compressing, numerical quadrature for oscillatory integrals, and the multilevel augmentation method. We prove that the proposed method enjoys an optimal convergence order and a nearly linear computational complexity. Numerical experiments are presented to confirm the theoretical estimates and to demonstrate the efficiency and accuracy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  2. Atkinson, K.E., Chandler, G.: Boundary integral equation methods for solving Laplace’s equation with nonlinear boundary conditions: the smooth boundary case. Math. Comput. 55, 451–472 (1990)

    MathSciNet  MATH  Google Scholar 

  3. Atkinson, K.E., Potra, F.A.: Projection and iterated projection methods for nonlinear integral equations. SIAM J. Numer. Anal. 24, 1352–1373 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Babolian, E., Mordad, M.: A numerical method for solving systems of linear and nonlinear integral equations of the second kind by hat basis functions. Comput. Math. Appl. 62, 187–198 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, H., Xu, Y.: A fast Fourier-Galerkin method for solving singular boundary integral equations. SIAM J. Numer. Anal. 46, 1965–1984 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, M., Chen, Z., Chen, G.: Approximate Solutions of Operator Equations. World Scientific Publishing Co., River Edge (1997)

    Book  MATH  Google Scholar 

  7. Chen, X., Chen, Z., Wu, B., Xu, Y.: Fast multilevel augmentation methods for nonlinear boundary integral equation. SIAM J. Numer. Anal. 49, 2231–2255 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. X. Chen, Z. Chen, B. Wu and Y. Xu: Multilevel augmentation methods for nonlinear boundary integral equations II: accelerated quadratures and Newton iterations. J. Integral Equ. Appl. (in press).

  9. Chen, Z., Micchelli, C.A., Xu, Y.: A construction of interpolation wavelets on invariant sets. Math. Comput. 68, 1569–1587 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Z., Wu, B., Xu, Y.: Fast multilevel augmentation methods for solving Hammerstein equations. SIAM J. Numer. Anal. 47, 2321–2346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cheng, P., Huang, J.: Extrapolation algorithms for solving nonlinear boundary integral equations by mechanical quadrature methods. Numer. Algorithm 58, 545–554 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Han, G.: Exptrapolation of a discrete collocation-type method of Hammerstein equations. J. Comput. Appl. Math. 61, 73–86 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, G., Wang, J.: Extrapolation of Nyström solution for two-dimensional nonlinear Fredholm integral equations. J. Sci. Comput. 14, 197–209 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, Y., Xu, Y.: Fast discrete algorithms for sparse Fourier expansions of high dimensional functions. J. Complex. 26, 51–81 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang, Y., Xu, Y.: Fast Fourier-Galerkin methods for solving singular boundary integral equations: numerical integration and precondition. J. Comput. Appl. Math. 234, 2792–2807 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaneko, H., Noren, R., Novaprateep, B.: Wavelet applications to the Petrov-Galerkin method for Hammerstein equations. Appl. Numer. Math. 45, 255–273 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaneko, H., Noren, R., Xu, Y.: Numerical solutions for weakly singular Hammerstein equations and their superconvergence. J. Integral Equ. Appl. 4, 391–407 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kress, R.: Linear Integral Equations. Springer, New York (1989)

    Book  MATH  Google Scholar 

  19. Kaneko, H., Xu, Y.: Degenerate kernel method for Hammerstein equations. Math. Comput. 62, 141–148 (1994)

    MathSciNet  Google Scholar 

  20. Kumar, S.: A discrete collocation-type method for Hammerstein equation. SIAM J. Numer. Anal. 25, 328–341 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kumar, S., Sloan, I.H.: A new collocation-type method for Hammerstein integral equations. Math. Comput. 48, 585–593 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lardy, L.J.: A variation of Nyström’s method for Hammerstein equations. J. Integral Equ. 3, 43–60 (1981)

    MathSciNet  MATH  Google Scholar 

  23. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order. Nemytskij Operators and Nonlinear Partial Differential Equations. de Gryuter, Berlin (1996)

    MATH  Google Scholar 

  24. Ruotsalainen, K., Wendland, W.: On the boundary element method for some nonlinear boundary value problems. Numer. Math. 53, 299–314 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Saranen, J.: Projection methods for a class of Hammerstein equations. SIAM J. Numer. Anal. 27, 1445–1449 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shahsavaran, A.: Computational method to solve nonlinear integral equations using block pulse functions by collocation method. Appl. Math. Sci. 5, 3211–3220 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Vainikko, G.M.: Perturbed Galerkin method and general theory of approximate methods for nonlinear equations. Zh. Vychisl. Mat. Fiz. 7, 723–751 (1967)

    MathSciNet  Google Scholar 

  28. Vainikko, G.M.: Galerkin’s perturbation method and the general theory of approximate methods (English translation). USSR Comput. Math. Math. Phys. 7, 1–41 (1967)

    Article  Google Scholar 

  29. Vainikko, G.M., Uba, P.: A piecewise polynomial approximation to the solution of an integral equation with weakly singular kernel. J. Aust. Math. Soc. Ser. B 22, 431–438 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yan, Y., Sloan, I.H.: On integral equations of the first kind with logarithmic kernels. J. Integral Equ. Appl. 1, 549–579 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research is partially supported by Guangdong Provincial Government of China through the “Computational Science Innovative Research Team” program, by Guangdong Province Key Lab of Computational Science, by the Natural Science Foundation of China under Grants 11071286, 91130009, 11071250, 11126149 and 11271370. The third author is also supported in part by US Air Force Office of Scientific Research under Grant FA9550-09-1-0511 and by the US National Science Foundation under Grant DMS-1115523.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Wang, R. & Xu, Y. Fast Fourier-Galerkin Methods for Nonlinear Boundary Integral Equations. J Sci Comput 56, 494–514 (2013). https://doi.org/10.1007/s10915-013-9687-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9687-y

Keywords

Navigation