Skip to main content
Log in

Numerical Treatment of Elliptic Problems Nonlinearly Coupled Through the Interface

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This work is devoted to the study of the numerical treatment of linear elliptic problems in adjoined domains nonlinearly coupled at the interface. The problem arises in semi-discretization of mass diffusion problems typically when an osmotic effect is taken into account. Convergence of both the Conjugate Gradient and the Fixed Point method are considered and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The case of non conformal mesh for the other type of domains was not reported because the zones of overlap of the triangles are difficult to treat and the two algorithms converge to different solutions; in this case we would need a finite element method that could exactly describe the geometry as is in the Isogeometric modelling. For an application of Isogeometric Analysis to a similar problem see [22].

References

  1. Bresch, D., Koko, J.: An optimization-based domani decomposition method for nonlinear wall laws in coupled systems. M3AS 14(7), 1085–1101 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Calabrò, F., Zunino, P.: Analysis of parabolic problems on partitioned domains with nonlinear conditions at the interface, applications to mass transfer through semi-permeable, membranes. M3AS 16(4), 1–23 (2006)

    Google Scholar 

  3. Canuto, C., Urban, K.: Adaptive optimization of convex functionals in Banach spaces. SIAM J. Numer. Anal. 42(5), 2043–2075 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Du, Q.: Optimization based nonoverlapping domain decomposition algorithms and their convergence. SIAM J. Numer. Anal. 39(3), 1056–1077 (2001) (electronic). MR MR1860457 (2003b:65117)

    Google Scholar 

  5. Du, Q., Gunzburger, M.D.: A gradient method approach to optimization-based multidisciplinary simulations and nonoverlapping domain decomposition algorithms. SIAM J. Numer. Anal. 37(5), 1513–1541 (2000) (electronic). MR MR1759905 (2001d:65162)

    Google Scholar 

  6. Gervasio, P., Lions, J.-L., Quarteroni, A.: Heterogeneous coupling by virtual control methods. Numer. Math. 90(2), 241–264 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gunzburger, M.D., Peterson, J.S., Kwon, H.: An optimization based domain decomposition method for partial differential equations. Comput. Math. Appl. 37(10), 77–93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gunzburger, M.D., Lee, H.K.: An optimization-based domain decomposition method for the Navier-Stokes equations. SIAM J. Numer. Anal. 37(5), 1455–1480 (2000) (electronic)

    Google Scholar 

  9. Hecht, F., Bernardi, D., Ohtsuka, K., Pironneau, O., Morice, J., Le Hyaric, A.: http://www.freefem.org/ff++/

  10. Hetzer, G., Meir, A.J.: On an interface problem with a nonlinear jump condition, numerical approximation of solutions. Int. J. Numer. Anal. Model. 4(3–4), 519–530 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Hron, J., Neuss-Radu, M., Pustějovská, P.: Mathematical modeling and simulation of flow in domains separated by leaky semipermeable membrane including osmotic effect. Appl. Math. 56(1), 51–68 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kedem, O., Katchalsky, A.: Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochimica et Biophysica Acta. 37, 229–246 (1958)

    Google Scholar 

  13. Koko, J.: Uzawa conjugate gradient domain decomposition methods for coupled stokes flows. J. Sci. Comput. 26(2), 195–216 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koko, Jonas: Convergence analysis of optimization-based domain decomposition methods for a bonded structure. Appl. Numer. Math. 58(1), 69–87 (2008)

    Article  MathSciNet  Google Scholar 

  15. Lee, H.K.: An optimization-based domain decomposition method for a nonlinear problem. Appl. Math. Comput. 113(1), 23–42 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lui, S.H.: On linear monotone iteration and Schwarz methods for nonlinear elliptic PDEs. Numer. Math. 93(1), 109–129 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Neuss-Radu, M., Jäger, W.: Effective transmission conditions for reaction-diffusion processes in domains separated by an interface. SIAM J. Math. Anal. 39(3), 687–720 (2007) (electronic)

    Google Scholar 

  18. Pao, C.V.: Nonlinear Parabolic and Elliptic Equations. Plenum Press, New York (1992)

    MATH  Google Scholar 

  19. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, 2nd edn, Texts in Applied Mathematics, vol. 37. Springer, Berlin (2007)

    Google Scholar 

  20. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, vol. 23. Springer, Berlin (1994)

    Google Scholar 

  21. Quarteroni, A., Veneziani, A., Zunino, P.: Mathematical and numerical modeling of solute dynamics in blood flow and arterial walls. SIAM J. Numer. Anal. 39(5), 1488–1511 (2002)

    Article  MathSciNet  Google Scholar 

  22. van der Zee, K.G., Verhoosel, C.V.: Isogeometric analysis-based goal-oriented error estimation for free-boundary problems. Finite Elem. Anal. Des. 47(6), 600–609 (2011)

    Article  MathSciNet  Google Scholar 

  23. Vurro, M., Castellano, L.: Numerical treatments of the interface discontinuity in solid-water mass transfer problems. Comput. Math. Appl. 45(4–5), 785–788 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to Paolo Zunino (Politecnico di Milano) for introducing this topic and sharing techniques suitable to deal with it. He also wish to thank the referees for carefully reading the original manuscript and suggesting numerous improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Calabrò.

Appendix: Fixed Point Iteration

Appendix: Fixed Point Iteration

In this section we consider a fixed point procedure for problem (1.1).

Recall definition (2.1) and consider:

$$\begin{aligned}&Do\ (until\ convergence)\nonumber \\&\qquad Calculate\ \mathbf{u}^{(n)} = \mathbf{T}(g(\mathbf{u}^{(n-1)})) \end{aligned}$$
(4.1)

For our analysis we need to assume that \(g(\zeta ,\xi )\) is locally lipschitz:

$$\begin{aligned} g(\zeta _1,\xi _1)- g(\zeta _2,\xi _2) \le l_K \left[ (\zeta _1-\zeta _2)^2+(\xi _1-\xi _2)^2 \right] ^{1/2}\quad \forall (\zeta _i,\xi _i)\in [0,K]^2.\quad \end{aligned}$$
(4.2)

In this hypothesis we can prove that the fixed point iterations are convergent. Our proof relies on a classic trace estimate, see ad example [20]:

Theorem 4.1

(Trace inequality) Let \(\Omega \) be regular and take \(v \in H^1(\Omega )\). Then \(\forall \varepsilon >0\) there is \(K_\varepsilon \) such that:

$$\begin{aligned} \int \limits _{\partial \Omega } v^2 \le \varepsilon \Vert \nabla v \Vert ^2_{L^2 (\Omega )} +K_\varepsilon \Vert v\Vert ^2_{L^2(\Omega )} . \end{aligned}$$
(4.3)

In order to prove convergence, take \(e_i^n=u_i^{(n)}-u_i\). By Eq. (4.1), function \(e_i^n\) solves the following problem:

$$\begin{aligned} a_i\left( e^n_i, v_i\right) + \alpha \left( e^n_i, v_i\right) _{\Omega _i} = \left( -1\right) ^{i+1} \left( g\left( u_1^{\left( n-1\right) },u_2^{\left( n-1\right) }\right) -g\left( u_1,u_2\right) ,v_i\right) _{\Gamma }\ . \end{aligned}$$

Now, taking in the previous equation as test function \(v_i\) the same function \(e_i^n\) and summing the two one obtains:

$$\begin{aligned}&a_1\left( e^n_1, e^n_1\right) + a_2\left( e^n_2, e^n_2\right) + \alpha \left( e^n_1, e^n_1\right) _{\Omega _1} + \alpha \left( e^n_2, e^n_2\right) _{\Omega _2}\nonumber \\&\quad = \left( g\left( u_1^{\left( n-1\right) },u_2^{\left( n-1\right) }\right) -g\left( u_1,u_2\right) ,e^n_1-,e^n_2\right) _{\Gamma }. \end{aligned}$$

Now we notice that \(a_i(e^n_i, e^n_i) \equiv \Vert \nabla e^n_i \Vert ^2_{L^2 (\Omega _i)}\) and \( \alpha (e^n_i, e^n_i)_{\Omega _i} \equiv \alpha \Vert e^n_i \Vert ^2_{L^2 (\Omega _i)}\) thus the previous can be written as:

$$\begin{aligned}&\Vert \nabla e^n_1 \Vert ^2_{L^2 (\Omega _1)} + \Vert \nabla e^n_2 \Vert ^2_{L^2 (\Omega _2)} + \alpha \left[ \Vert e^n_1 \Vert ^2_{L^2 (\Omega _1)} + \Vert e^n_2 \Vert ^2_{L^2 (\Omega _2)} \right] \nonumber \\&\quad = \left( g(u_1^{(n-1)},u_2^{(n-1)})-g(u_1,u_2),e^n_1-,e^n_2\right) _{\Gamma } . \end{aligned}$$

In order to estimate the right hand side, we use the lipschitz condition, the triangular, Jensen and Joung inequalities to obtain:

$$\begin{aligned}&\left( g(u_1^{(n-1)},u_2^{(n-1)})-g(u_1,u_2),e^n_1-,e^n_2\right) _{\Gamma }\\&= \int \limits _\Gamma \left[ g(u_1^{(n-1)},u_2^{(n-1)}) - g(u_1,u_2)\right] [e_1^n -e^n_2 ] \\&\le \int \limits _\Gamma \left| \left[ g(u_1^{(n-1)},u_2^{(n-1)}) - g(u_1,u_2)\right] [e_1^n -e^n_2 ] \right| \\&\le \int \limits _\Gamma l_K \left[ (e_1^{n-1})^2 + (e_2^{n-1})^2 \right] ^{1/2}\left| e_1^n -e^n_2 \right| \\&\le \Vert l_K \Vert _{L^1(\Gamma )} \int \limits _\Gamma \left[ (e_1^{n-1})^2 + (e_2^{n-1})^2\right] ^{1/2} \left( |e_1^n| + |e^n_2 |\right) \\&= \Vert l_K \Vert _{L^1(\Gamma )} \left[ \int \limits _\Gamma [ (e_1^{n-1})^2 + (e_2^{n-1})^2 ]^{1/2} |e_1^n| + \int \limits _\Gamma [ (e_1^{n-1})^2 +(e_2^{n-1})^2 ]^{1/2} |e^n_2 |\right] \\&\le \Vert l_K \Vert _{L^1(\Gamma )} \left[ \int \limits _\Gamma \left\{ \dfrac{1}{2} [ (e_1^{n-1})^2 + (e_2^{n-1})^2 ] + \dfrac{1}{2} |e_1^n|^2\right\} \right. \nonumber \\&\left. + \int \limits _\Gamma \left\{ \dfrac{1}{2} [ (e_1^{n-1})^2 + (e_2^{n-1})^2 ] +\dfrac{1}{2} |e_2^n|^2\right\} \right] \\&= \dfrac{\Vert l_K \Vert _{L^1(\Gamma )} }{2} \left[ 2 \Vert e_1^{n-1} \Vert _{L^2(\Gamma )}^2 + 2 \Vert e_2^{n-1} \Vert _{L^2(\Gamma )}^2 + \Vert e_1^n \Vert {L^2(\Gamma )}^2 + e_2^n \Vert _{L^2(\Gamma )}^2 \right] . \end{aligned}$$

Summarizing we get:

$$\begin{aligned}&\Vert \nabla e_1^n\Vert ^2_{L^2(\Omega ^1)} + \Vert \nabla e_2^n\Vert ^2_{L^2(\Omega ^2)} + \alpha \left[ \Vert e_1^n\Vert ^2_{L^2(\Omega ^1)} + \Vert e_2^n\Vert ^2_{L^2(\Omega ^2)} \right] \\&\le \Vert l_K \Vert _{L^1(\Gamma )} \left[ \Vert e_1^{n-1} \Vert _{L^2(\Gamma )}^2 + \Vert e_2^{n-1} \Vert _{L^2(\Gamma )}^2\right] + \dfrac{\Vert l_K \Vert _{L^1(\Gamma )}}{2} \left[ \Vert e_1^n\Vert ^2_{L^2(\Gamma )} + \Vert e_2^n\Vert ^2_{L^2(\Gamma )}\right] \end{aligned}$$

Now we can use Theorem 3.1 at \(\Vert e_i^n \Vert _{L^2(\Gamma )} \) with \(\alpha = \dfrac{K_\varepsilon }{\varepsilon } \) and \(k_1= \dfrac{1}{\varepsilon }= \displaystyle \left\{ \dfrac{\Vert l_K \Vert _{L^1(\Gamma )}}{2}\right. \)+ \(\left. \gamma \Vert l_K \Vert _{L^1(\Gamma )} \right\} \), where \(\gamma >1\) is a parameter.

With all these positions we have:

$$\begin{aligned}&\left\{ { \dfrac{\Vert l_K \Vert _{L^1(\Gamma )}}{2} + \gamma \Vert l_K \Vert _{L^1(\Gamma )} }\right\} \left[ \Vert e_1^n\Vert ^2_{L^2(\Gamma )} + \Vert e_2^n\Vert ^2_{L^2(\Gamma )}\right] \\&\le \alpha \left[ \Vert e_1^n\Vert ^2_{L^2(\Omega ^1)} + \Vert e_2^n\Vert ^2_{L^2(\Omega ^2)} \right] + \left( \Vert \nabla e_1^n\Vert ^2_{L^2(\Omega ^1)} + \Vert \nabla e_2^n\Vert ^2_{L^2(\Omega ^2)}\right) \end{aligned}$$

Substituting this we have:

$$\begin{aligned} \gamma \left[ \Vert e_1^n\Vert ^2_{L^2(\Gamma )} + \Vert e_2^n\Vert ^2_{L^2(\Gamma )}\right] \le \left[ \Vert e_1^{n-1} \Vert _{L^2(\Gamma )}^2 + \Vert e_2^{n-1} \Vert _{L^2(\Gamma )}^2\right] \ . \end{aligned}$$

Now we can conclude on convergence because the parameter \(\gamma \) has been chosen \(\gamma >1\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calabrò, F. Numerical Treatment of Elliptic Problems Nonlinearly Coupled Through the Interface. J Sci Comput 57, 300–312 (2013). https://doi.org/10.1007/s10915-013-9706-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9706-z

Keywords

Navigation