Abstract
The active contour segmentation model of Chan and Vese has been widely used and generalized in different contexts in the literature. One possible modification is to employ Euler’s elastica as the regularization of active contour. In this paper, we study the new effects of this modification and validate them numerically using the augmented Lagrangian method.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.











Similar content being viewed by others
References
Ambrosio, L., Masnou, S.: A direct variational approach to a problem arising in image reconstruction. Interfaces Free Bound. 5, 63–81 (2003)
Ambrosio, L., Masnou, S.: On a Variational Problem Arising in Image Reconstruction, vol. 147. Birkhauser, Basel (2004)
Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via Gamma convergence. Comm. Pure Appl. Math. 43, 999–1036 (1990)
Bae, E., Shi, J., Tai, X.-C.: Graph cuts for curvature based image denoising. IEEE Trans. Image Process. 20(5), 1199–1210 (2011)
Bertozzi, A.L., Greer, J.B.: Low curvature image simplifiers: global regularity of smooth solutions and Laplacian limiting schemes. Comm. Pure Appl. Math. 57, 764–790 (2004)
Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. Computer Graphics, SIGGRAPH (2000)
Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours. Numerische Mathematik 66, 1–31 (1993)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)
Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)
Chan, T., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)
Chan, T., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of denoising and segmentation models. SIAM J. Appl. Math. 66, 1632–1648 (2006)
Chan, T., Kang, S.H., Shen, J.H.: Euler’s elastica and curvature based inpaintings. SIAM J. Appl. Math 63(2), 564–592 (2002)
Chan, T., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. vol. 11(2), pp. 130–141, June 2000 (Special Issue of “Scale Space Theories in Computer Vision ’99”). June (2000)
Cremers, D., Tischhuser, F., Weickert, J., Schnrr, C.: Diffusion snakes: introducing statistical shape knowledge into the Mumford-Shah functional. Int. J. Comput. Vis. 50(3), 295–313 (2002)
El-Zehiry, N., Grady, L.: Fast global optimization of curvature. In: Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and, Pattern Recognition, pp. 3257–3264, (2010)
Elsey, M., Esedoḡlu, S.: Analogue of the total variation denoising model in the context of geometry processing. SIAM J. Multiscale Model. Simul. 7(4), 1549–1573 (2009)
Esedoḡlu, S., Shen, J.: Digital inpainting based on the Mumford-Shah-Euler image model. Eur. J. Appl. Math. 13, 353–370 (2002)
Kanizsa, G.: Organization in Vision: Essays on Gestalt Perception. Praeger, New York (1979)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)
Li, C., Kao, C., Gore, J.C., Ding, Z.: Implicit active contours driven by local binary fitting energy, Comput. Vis. Pattern Recognit. (CVPR), pp. 1–7, (2007)
Lie, J., Lysaker, M., Tai, X.C.: A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Trans. Image Process. 15(5), 1171–1181 (2006)
Lions, P.L., Mercier, B.: Splitting algorithms for the sume of two nonlinear opertors. SIAM J. Numer. Amal. 16, 964–979 (1979)
Malladi, R., Sethian, J.A., Vemuri, B.C.: A topology independent shape modeling scheme. In: Proceedings SPIE Conference Geometric Methods Computer Vision II, vol. 2031, San Diego, CA, pp. 246–258, (1993)
Masnou, S.: Disocclusion: a variational approach using level lines. IEEE Trans. Image Process. 11, 68–76 (2002)
Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proceedings IEEE International Conference on Image Processing, Chicago, IL, pp. 259–263 (1998)
Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)
Nitzberg, M., Mumford, D., Shiota, T.: Filering, Segmentation, and Depth, Lecture Notes in Computer Science, vol. 662. Springer, Berlin (1993)
Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed-algorithm based on HamiltonJacobi formulations. J. Comput. Phys. 79, 12–49 (1988)
Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)
Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithm. Phys. D 60, 259–268 (1992)
Schoenemann, T., Kahl, F., Cremers, D.: Curvature regularity for region-based image segmentation and inpainting: a linear programming relaxation. IEEE Int. Conf. Comput. Vis. (ICCV), (2009)
Schoenemann, T., Kahl, F., Masnou, S., Cremers, D.: A linear framework for region-based image segmentation and inpainting involving curvature penalization, to apppear in Int. J. Comput. Vis. (2012)
Tai, X.C., Hahn, J., Chung, G.J.: A fast algorithm for Euler’s Elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 4(1), 313–344 (2011)
Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)
Wu, C., Tai, X.C.: Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, Vectorial TV, and high order models. SIAM J. Imaging Sci. 3(3), 300–339 (2010)
Zhu, W., Chan, T.: A variational model for capturing illusory contours using curvature. J. Math. Imaging Vis. 27, 29–40 (2007)
Zhu, W., Chan, T., Esedoḡlu, S.: Segmentation with depth: a level set approach. SIAM J. Sci. Comput. 28, 1957–1973 (2006)
Zhu, W., Tai, X.C., Chan, T.: Augmented Lagrangian method for a mean curvature based image denoising model, To appear in Inverse Problems and Imaging
Author information
Authors and Affiliations
Corresponding author
Additional information
This work has been supported by NSF contract DMS-1016504.
Rights and permissions
About this article
Cite this article
Zhu, W., Tai, XC. & Chan, T. Image Segmentation Using Euler’s Elastica as the Regularization. J Sci Comput 57, 414–438 (2013). https://doi.org/10.1007/s10915-013-9710-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-013-9710-3