Abstract
In this paper, we give the modified characteristics Gauge–Uzawa finite element method (MCGUFEM) for time dependent conduction–convection problems, which is gotten by combining the modified characteristics finite element method and the Gauge–Uzawa method. The stability analysis and the error analysis, which shows that our method is stable and has optimal convergence order, are given. In order to show the effect of MCGUFEM, some numerical results are presented. From the numerical results, we can see that MCGUFEM can simulate the fluid field, temperature field and pressure field very well, and MCGUFEM works better for high Grashoff number \(\kappa \) than GUFEM.












Similar content being viewed by others
References
Buscaglia, G., Dari, E.A.: Implementation of the Lagrange–Galerkin method for the incompressible for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 15, 23–36 (1992)
Boland, J., Layton, W.: Error analysis for finite element method for natural convection problems. Numer. Funct. Anal. Optimiz. 11, 449–483 (1990)
Boukir, K., Maday, Y., MéTivet, B., Razafindrakoto, E.: A higer-order characteristics/finite element method for the incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 25, 1421–1454 (1997)
Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)
Dawson, C.N., Russell, T.F., Wheeler, M.F.: Some improved error estimates for the modified method of characteristics. SIAM J. Numer. Anal. 26(6), 1487–1512 (1989)
Douglas Jr, J., Russell, T.F.: Numerical methods for convection-dominaed diffusion problems based on combing the method of charateristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19, 871–885 (1982)
Liu, J.G.: Gauge method for viscous incompressible flows. Commun. Math. Sci. 1(2), 317–332 (2003)
Garcia, J., Cabeza, J., Rodriguez, A.: Two-dimensional non-linear inverse heat conduction problem based on the singular value decomposition. Int. J. Thermal Sci. 48, 1081–1093 (2009)
Guermond, J.L., Shen, J.: On the error estimates of rotational pressure-correction projection methods. Math. Comput. 73, 1719–1737 (2004)
Guermond, J.L., Shen, J.: Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41(1), 112–134 (2003)
Guermond, J.L., Shen, J.: A new class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys. 192(1), 262–276 (2003)
He, Y.N., Wang, A.W.: A simplified two-level method for the steady Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 197, 1568–1576 (2008)
Kim, D., Choi, Y.: Analysis of conduction-natural convection conjugate heat transfer in the gap between concentric cylinders under solar irradiation. Int. J. Thermal Sci. 48, 1247–1258 (2009)
Li, J., Chen, Z.X.: A new local stabilized non conforming finite element method for the Stokes equations. Computing 82, 157–170 (2008)
Luo, Z., Chen, J., Navon, I.M., Zhu, J.: An optimizing reduced PLSMFE formulation for non-stationary conduction-convection problems. Int. J. Numer. Methods Fluids 60, 409–436 (2009)
Nochetto, R., Pyo, J.: The gauge-Uzawa finite element method. Part 1: the Navier–Stokes equations. SIAM J. Numer. Anal. 43(3), 1043–1086 (2005)
Nochetto, R., Pyo, J.H.: The finite element Gauge-Uzawa method. Part II: the Boussinesq equations. Math. Model. Methods Appl. Sci. 16(10), 1599–1626 (2006)
Nochetto, R., Pyo, J.: Error estimates for semi-discrete gauge methods for the Navier–Stokes equations. Math. Comput. 74(250), 521–542 (2005)
Pironneu, O.: On the transport-diffusion algorithm and it’s applications to the Navier–Stokes equations. Numer. Math. 38, 309–332 (1982)
Pyo, J., Shen, J.: Gauge-Uzawa methods fot incompressible flows with variable density. J. Comput. Phys. 221, 181–197 (2001)
Russell, T.F.: Time stepping along charactercteristics with incomplete iteration for a Galerkin approximation of miscible displacement in prous media. SIAM J. Numer. Anal. 22(5), 970–1013 (1985)
Shen, J., Yang, X.: Error estimates for finite element approximations of consistent splitting schemes for incompressible flows. DCDS-B 8, 663–676 (2007)
Si, Z.Y.: Second order modified method of characteristics mixed defect-correction finite element method for time dependent Navier–Stokes problems. Numer. Algorithm 59(2), 271–300 (2012)
Si, Z.Y., He, Y.N.: A coupled Newton iterative mixed finite element method for stationary conduction-convection problems. Computing 89(1–2), 1–25 (2010)
Si, Z.Y., He, Y.N.: A defect-correction mixed finite element method for stationary conduction-convection problems. Math. Prob. Engine. 2011, 370192 (2011). doi:10.1155/2011/370192
Si, Z.Y., He, Y.N., Wang, K.: A defect-correction method for unsteady conduction convection problems I: spatial discretization. Sci. China. Math. 54, 185–204 (2011)
Si, Z.Y., He, Y.N., Zhang, T.: A defect-correction method for unsteady conduction-convection problems II: time discretization. J. Comput. Appl. Math. 236(9), 2553–2573 (2012)
Si, Z.Y., Shang, Y.Q., Zhang, T.: New one- and two-level Newton iterative mixed finite element methods for stationary conduction-convection problem. Finite Elem. Anal. Des. 47, 175–183 (2011)
Si, Z.Y., Zhang, T., Wang, K.: A Newton iterative scheme mixed finite element method for stationary conduction-convection problems. Int. J. Comput. Fluid Dyn. 24, 135–141 (2010)
Sun, H.Y., He, Y.N., Feng, X.L.: On error estimates of the pressure-correction projection methods for the time-dependent Navier–Stokes equations. Int. J. Numer. Anal. Model. 8(1), 70–85 (2011)
Temam, R.: Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires II. Arch. Rat. Mech. Anal. 33, 377–385 (1969)
Acknowledgments
The authors would like to thank the editor and the referees for their valuable comments, which led to the improvement of this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is supported by Chinese NSF (Grant No. 11226306), the Doctoral Foundation of Henan Polytechnic University (No. B2012-56) and the Natural Science Foundation of Xinjiang Province (Grant No. 2013211B01).
Rights and permissions
About this article
Cite this article
Si, Z., Song, X. & Huang, P. Modified Characteristics Gauge–Uzawa Finite Element Method for Time Dependent Conduction–Convection Problems. J Sci Comput 58, 1–24 (2014). https://doi.org/10.1007/s10915-013-9721-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-013-9721-0
Keywords
- Time-dependent conduction–convection problems
- Modified characteristics method
- Gauge–Uzawa method
- Stability analysis
- Error estimate