Abstract
This article introduces a class of piecewise-constant image segmentation models that involves \(L^1\) norms as data fidelity measures. The \(L^1\) norms enable to segment images with low contrast or outliers such as impulsive noise. The regions to be segmented are represented as smooth functions instead of the Heaviside expression of level set functions as in the level set method. In order to deal with both non-smooth data-fitting and regularization terms, we use the variable splitting scheme to obtain constrained optimization problems, and apply an augmented Lagrangian method to solve the problems. This results in fast and efficient iterative algorithms for piecewise-constant image segmentation. The segmentation framework is extended to vector-valued images as well as to a multi-phase model to deal with arbitrary number of regions. We show comparisons with Chan-Vese models that use \(L^2\) fidelity measures, to enlight the benefit of the \(L^1\) ones.












Similar content being viewed by others
References
Alliney, S.: A property of the minimum vectors of a regularizing functional defined by means of the absolute norm. IEEE Trans. Signal Proc. 45(5), 913–917 (1997)
Bae, E., Yuan, J., Tai, X.C.: Global minimization for continuous multiphase partitioning problems using a dual approach. Int. J. Comput. Vis. 92(1), 112–129 (2009)
Bar, L., Brook, A., Sochen, N., Kiryati, N.: Deblurring of color images corrupted by impulsive noise. IEEE Trans. Image Proc. 16(4), 1101–1111 (2007)
Bertsekas, D.: Constrained Optimization and Lagrange Multiplier Methods, Computer Science and Applied Mathematics. Academic Press, Boston (1982)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2010)
Bresson, X., Esedoglu, S., Vandergheynst, P., Thiran, J., Osher, S.: Fast global minimization of the active contour/snake models. J. Math. Imaging Vis. 28(2), 151–167 (2007)
Brown, E., Chan, T., Bresson, X.: A convex approach for multi-phase piecewise constant mumford-shah image segmentation. UCLA CAM report 09–66 (2009)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)
Chan, R., Ho, C., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detectors and edge-preserving regularization. IEEE Trans. Image Proc. 14(10), 1479–1485 (2005)
Chan, T., Esedoglu, S.: Aspects of total varation regularized l1 function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)
Chan, T., Esedoglu, S., Nikolova, M.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. Appl. Math. 66(5), 1632–1648 (2006)
Chan, T., Sandberg, B., Vese, L.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11, 130–141 (2000)
Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Proc. 10(2), 266–277 (2001)
Cohen, L.: On active contour models and balloons. CVGIP: Image Underst. 53, 211–218 (1991)
Douglas, J., Rachford, H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82(3), 421–439 (1956)
Eckstein, J.: Nonlinear proximal point algorithms using bregman functions, with applications to convex programming. Math. Oper. Res. 18(1), 202–226 (1993)
Eckstein, J., Bertsekas, D.: On the douglasrachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 5, 293–318 (1992)
Esser, E.: Applications of lagrangian-based alternating direction methods and connections to split-bregman. UCLA CAM report 09-31 (2009)
Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary Value Problems, Stud. Math. Appl., North Holland, Amsterdam, chap 9 pp. 299–331 (1983)
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comput. Math. Appl. 2, 17–40 (1976)
Glowinski, R., Marroco, A.: Sur l’approximation, par elements finis d’ordre un, et la resolution, par penalisation-dualité d’une classe de problemes de dirichlet non lineares. Revue Française d’Automatique, Informatique et Recherche Opérationelle 9, 41–76 (1975)
Goldstein, T., Bresson, X., Osher, S.: Geometric applications of the split bregman method: segmentation and surface reconstruction. J. Sci. Comput. 45, 272–293 (2010)
Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)
Jung, M., Bresson, X., Chan, T., Vese, L.: Nonlocal mumford-shah regularizers for color image restoration. IEEE Trans. Image Proc. 20(6), 1583–1598 (2011)
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 17, 321–331 (1988)
Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzy, A.: Gradient flows and geometric active contour models. Proceedings of the ICCV’95, Cambridge, MA, pp. 810–815 (1995)
Kimmel, R.: Osher, S., Paragios N. (eds.) Fast Edge Integration, Geometric Level Set Methods in Imaging, Vision, and Graphics. Springer, New York (2003)
Kiwiel, K.: Proximal minimization methods with generalized bregman functions. SIAM J. Control Optim. 35(4), 1142–1168 (1997)
Lee, Y.T., Le, T.: Active contour without edges for multiphase segmentations with the presence of poisson noise. UCLA CAM report 11-46 (2011)
Lellmann, J., Schnörr, C.: Continuous multiclass labeling approaches and algorithms. SIAM J. Imaging Sci. 4, 1049–1096 (2011)
Li, F., Shen, C., Li, C.: Multiphase soft segmentation with total variation and \(h^1\) regularization. J. Math. Imaging Vis. 37, 98–111 (2010)
Lie, J., Lysaker, M., Tai, X.C.: A binary level set model and some applications to mumford-shah image segmentation. IEEE Trans. Image Proc. 15, 1171–1181 (2006)
Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17, 158–175 (1995)
Martinet, B.: Régularisation dinéquations variationnelles par approximations successives. Rev. Française Informat Recherche Opérationnelle 4, 154–158 (1970)
Mota, J., Xavier, J., Aguiar, P., Puschel, M.: A proof of convergence for the alternating direction method of multipliers applied to polyhedral-constrained functions. Technical report (2011)
Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)
Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. SIAM J. Numer. Anal. 40(3), 965–994 (2002)
Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20, 99–120 (2004)
Nikolova, M.: Weakly constrained minimization: application to the estimation of images and signals involving constant regions. J. Math. Imaging Vis. 21(2), 155–175 (2004)
Nocedal, J., Wright, S.: Numerical Optimization. Springer, NewYork (1999)
Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for the total variation based image restoration. Multiscale Model. Simul. 4, 460–489 (2005)
Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)
Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. Int. J. Comput. Vis. 46(3), 223–247 (2002)
Pock, T., Chambolle, A., Cremers, D., Bischof, H.: A convex approach for computing minimal partitions. In: IEEE Conference on Computer Vision and, Pattern Recognition, pp. 810–817 (2009)
Potts, R., Domb, C.: Some generalized order-disorder transformations. Mathematical Proceedings of the Cambridge Philosophical Society, pp. 106–109 (1952)
Rockafellar, R.: Augmented lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)
Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 227–238 (1996)
Sagiv, C., Sochen, N.A., Zeevi, Y.Y.: Integrated active contours for texture segmentation. IEEE Trans. Image Proc. 15, 1633–1646 (2006)
Samson, C., Blanc-Feraud, L., Aubert, G., Zerubia, J.: A variational model for image classification and restoration. IEEE Trans. Patt. Anal. Mach. Intell. 22(5), 460–472 (2000)
Setzer, S.: Operator splittings, bregman methods and frame shrinkage in image processing. Int. J. Comput. Vis. 92, 265–280 (2011)
Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)
Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)
Yang, Y., Wu, B.: A new and fast multiphase image segmentation model for color images. Math. Probl. Eng. 2012 (2012). doi:10.1155/2012/494761
Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)
Zach, C., Gallup, D., Frahm, J., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: Vision, Modeling and Visualization Workshop, pp. 243–252 (2008)
Zhang, R., Bresson, X., Chan, T., Tai, X.: Four color theorom and convex relaxation for image segmentation with any number of regions. UCLA CAM report 13-16 (2013)
Zhang, Y.: An alternating direction algorithm for nonnegative matrix factorization. Technical report (2010)
Zhao, H.K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127(31), 179–195 (2006)
Acknowledgments
Miyoun Jung was supported in part by TJ Park Science Fellowship of POSCO TJ Park Foundation and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2013-010416). Myungjoo Kang was supported in part by Basic Science Research Program (2013-025173) through the National Research Foundation of Korea and by the Ministry of Culture, Sports and Tourism (MCST) and Korea Creative Content Agency (KOCCA) in the Culture Technology(CT) Research & Development Program.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jung, M., Kang, M. & Kang, M. Variational Image Segmentation Models Involving Non-smooth Data-Fidelity Terms. J Sci Comput 59, 277–308 (2014). https://doi.org/10.1007/s10915-013-9766-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-013-9766-0