Skip to main content
Log in

A Posteriori Error Estimates for Weak Galerkin Finite Element Methods for Second Order Elliptic Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A residual type a posteriori error estimator is presented and analyzed for Weak Galerkin finite element methods for second order elliptic problems. The error estimator is proved to be efficient and reliable through two estimates, one from below and the other from above, in terms of an \(H^1\)-equivalent norm for the exact error. Two numerical experiments are conducted to demonstrate the effectiveness of adaptive mesh refinement guided by this estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ainsworth, M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42(6), 2320–2341 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alonso, A.: Error estimators for a mixed method. Numer. Math. 74(4), 385–395 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Carstensen, C.: A posteriori error estimate for the mixed finite element method. Math. Comput. 66, 465–476 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, L.: \(i\)FEM: An integrated finite element methods package in MATLAB. University of California at Irvine, Technical Report (2009)

  5. Chen, L., Holst, M., Xu, J.: Convergence and optimality of adaptive mixed finite element methods. Math. Comput. 78, 35–53 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, L., Yie, X., Wang, J., Wang, Y.: Multilevel preconditioners for weak Galerkin methods, In preparation (2013)

  7. Chen, Z., Dai, S.: On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients. SIAM J. Sci. Comput. 24(2), 443–462 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dari, V., Duran, E., Padra, R.G., Vampa, C.: A posteriori error estimators for nonconforming finite element methods. Math. Model. Numer. Anal. 30, 385–400 (1996)

    MATH  MathSciNet  Google Scholar 

  9. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dryja, M., Sarkis, M.V., Widlund, O.B.: Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72(3), 313–348 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Duran, R.G.: Mixed Finite Element Methods. Class Notes (2007)

  12. Girault, V., Raviart, P.: Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, volume 5 of Springer Series in Computational Mathematics. Springer, Berlin (1986). 87:52227

    Book  Google Scholar 

  13. Kellogg, R.B.: On the Poisson equation with intersecting interfaces. Appl. Anal. 4(2), 101–129 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kossaczky, I.: A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55, 275–288 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mitchell, W.F.: A comparison of adaptive refinement techniques for elliptic problems. ACM Trans. Math. Softw. 15(4), 326–347 (1989)

    Article  MATH  Google Scholar 

  16. Mu, L., Wang, J., Wang, Y., Ye, X.: A weak Galerkin mixed finite element method for Biharmonic equations. arXiv:1210.3818 (2012)

  17. Mu, L., Wang, J., Wei, G., Ye, X., Zhao, S.: Weak Galerkin method for the elliptic interface problem. J. Comput. Phys. doi:10.1016/j.jcp.2013.04.042 (2013)

  18. Mu, L., Wang, J., Ye, X.: A weak Galerkin finite element method with polynomial reduction. arXiv:1304.6481 (2012)

  19. Mu, L., Wang, J., Ye, X., Zhang, S.: A \(C^0\)-weak Galerkin finite element method for the biharmonic equation. arXiv:1212.0250 (2012)

  20. Mu, L., Wang, J., Ye, X., Zhao, S.: Numerical studies on the weak Galerkin method for the Helmholtz equation with large wave number. arXiv:1111.0671 (2011)

  21. Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16(1), 47–75 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Verfürth, R.: A Review of a posteriori Error Estimation and Adaptive Mesh Refinement Techniques. Wiley Teubner, Chichester and Newyork (1996)

  23. Wang, J., Ye, X.: A weak Galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math. 241, 103–115 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comp., to appear (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Chen.

Additional information

Long Chen: This research was supported in part by National Science Foundation Grant DMS-1115961 and in part by Department of Energy prime award # DE-SC0006903.

Junping Wang: The research of Wang was supported by the NSF IR/D program, while working at National Science Foundation. However, any opinion, finding, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

Xiu Ye: This research was supported in part by National Science Foundation Grant DMS-1115097.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Wang, J. & Ye, X. A Posteriori Error Estimates for Weak Galerkin Finite Element Methods for Second Order Elliptic Problems. J Sci Comput 59, 496–511 (2014). https://doi.org/10.1007/s10915-013-9771-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9771-3

Keywords

Mathematics Subject Classification

Navigation