Skip to main content
Log in

Energy Stable Flux Reconstruction Schemes for Advection–Diffusion Problems on Tetrahedra

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

An Erratum to this article was published on 23 October 2013

Abstract

The flux reconstruction (FR) methodology provides a unifying description of many high-order schemes, including a particular discontinuous Galerkin (DG) scheme and several spectral difference (SD) schemes. In addition, the FR methodology has been used to generate new classes of high-order schemes, including the recently discovered ‘energy stable’ FR schemes. These schemes, which are often referred to as VCJH (Vincent–Castonguay–Jameson–Huynh) schemes, are provably stable for linear advection–diffusion problems in 1D and on triangular elements. The VCJH schemes have been successfully applied to a wide variety of problems in 1D and 2D, ranging from linear advection–diffusion problems, to fluid mechanics problems requiring the solution of the compressible Navier–Stokes equations. Based on the results of these numerical experiments, it has been shown that certain VCJH schemes maintain the expected order of spatial accuracy and possess explicit time-step limits which rival those of the collocation-based nodal DG scheme. However, it remained to be seen whether the VCJH schemes could be extended to 3D on tetrahedral elements, enabling their convenient application to the complex geometries that arise in many real-world problems. For the first time, this article presents an extension of the VCJH schemes to tetrahedral elements. This work provides a formal proof of the stability of the new schemes and assesses their performance via numerical experiments on model problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Allaneau, Y., Jameson, A.: Connections between the filtered discontinuous Galerkin method and the flux reconstruction approach to high order discretizations. Comput. Methods Appl. Mech. Eng. 200(49), 3628–3636 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bassi, F., Rebay, S.: Accurate 2D Euler computations by means of a high order discontinuous finite element method. In: 14th International Conference on Numerical Methods in Fluid Dynamics. Bangalor, India (1994)

  4. Bassi, F., Rebay, S.: Discontinuous finite element high order accurate numerical solution of the compressible Navier–Stokes equations. In: ICFD Conference on Numerical Methods in Fluid Dynamics. University of Oxford, Oxford, England (1995)

  5. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: Decuypere, R., Dibelius, G. (eds.) 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics. Antwerpen, Belgium (1997)

  7. Brady, M., Horn, B.K.P.: Rotationally symmetric operators for surface interpolation. Comput. Vis. Graph. Image Process. 22(1), 70–94 (1983)

    Article  MATH  Google Scholar 

  8. Carpenter, M.H., Kennedy, C.: Fourth-Order 2N-Storage Runge–Kutta Schemes. Tech. Rep. TM 109112, NASA, Langley Research Center (1994)

  9. Castonguay, P.: High-Order Energy Stable Flux Reconstruction Schemes for Fluid Flow Simulations on Unstructured Grids. Ph.D. Thesis, Stanford University (2012)

  10. Castonguay, P., Vincent, P.E., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes for conservation laws on triangular grids. J. Sci. Comput. 51(1), 224–256 (2011)

    Google Scholar 

  11. Cockburn, B., Hou, S., Shu, C.W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54(190), 545–581 (1990)

    MATH  MathSciNet  Google Scholar 

  12. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Danielsson, P.E., Seger, O.: Rotation invariance in gradient and higher order derivative detectors. Comput. Vis. Graph. Image Process. 49(2), 198–221 (1990)

    Article  MATH  Google Scholar 

  14. Friedrichs, K.O.: Symmetric hyperbolic linear differential equations. Commun. Pure Appl. Math. 7, 345–392 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gao, H., Wang, Z.J.: A high-order lifting collocation penalty formulation for the Navier–Stokes equations on 2D mixed grids. In: 19th AIAA Computational Fluid Dynamics. San Antonio, TX (2009)

  16. Grimson, W.E.L.: From Images to Surfaces: A Computational Study of the Human Early Visual System. MIT Press, Cambridge (1981)

    Google Scholar 

  17. Haga, T., Gao, H., Wang, Z.J.: A high-order unifying discontinuous formulation for 3D mixed grids. In: 48th AIAA Aerospace Sciences Meeting. Orlando, FL (2010)

  18. Haga, T., Gao, H., Wang, Z.J.: A high-order unifying discontinuous formulation for the Navier–Stokes equations on 3D mixed grids. Mathe. Model. Nat. Phenom. 6(3), 28–56 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)

    Google Scholar 

  20. Hirsch, C.: Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics, Volume I. Butterworth-Heinemann, London (2007)

  21. Hu, F.Q., Hussaini, M.Y., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151(2), 921–946 (1999)

    Article  MATH  Google Scholar 

  22. Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: 18th AIAA Computational Fluid Dynamics Conference. Miami, FL (2007)

  23. Huynh, H.T.: A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion. In: 47th AIAA Aerospace Sciences Meeting. Orlando, FL (2009)

  24. Huynh, H.T.: High-order methods including discontinuous Galerkin by reconstructions on triangular meshes. In: 49th AIAA Aerospace Sciences Meeting. Orlando, FL (2011)

  25. Jameson, A.: A proof of the stability of the spectral difference method for all orders of accuracy. J. Sci. Comput. 45(1), 348–358 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kannan, R., Wang, Z.J.: LDG2: a variant of the LDG flux formulation for the spectral volume method. J. Sci. Comput. 46(2), 314–328 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kopriva, D.A., Kolias, J.H.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125, 244–261 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  29. Liu, Y., Vinokur, M., Wang, Z.J.: Spectral difference method for unstructured grids I: basic formulation. J. Comput. Phys. 216, 780–801 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Peraire, J., Persson, P.O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30(4), 1806–1824 (2009)

    Article  MathSciNet  Google Scholar 

  31. Raviart, P., Thomas, J.: A mixed finite element method for second-order elliptic problems. In: Mathematical Aspects of Finite Element Methods, pp. 292–315. Springer, Berlin (1977)

  32. Van den Abeele, K., Lacor, C.: An accuracy and stability study of the 2D spectral volume method. J. Comput. Phys. 226(1), 1007–1026 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47(1), 50–72 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vincent, P.E., Jameson, A.: Facilitating the adoption of unstructured high-order methods amongst a wider community of fluid dynamicists. Math. Model. Nat. Phenom. 6(3), 97–140 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang, Z.J., Gao, H.: A unifying lifting collocation penalty formulation for the Euler equations on mixed grids. In: AIAA P. 47th AIAA Aerospace Sciences Meeting, Orlando, FL, Jan. 5–8 (2009)

  36. Wang, Z.J., Gao, H.: A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J. Comput. Phys. 228(21), 8161–8186 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  37. Williams, D.M.: Energy Stable High-Order Methods for Simulating Unsteady, Viscous, Compressible Flows on Unstructured Grids. Ph.D. Thesis, Stanford University (2013)

  38. Williams, D.M., Castonguay, P., Vincent, P.E., Jameson, A.: Energy stable flux reconstruction schemes for advection–diffusion problems on triangles. J. Comput. Phys. 250, 53–76 (2013)

    Article  Google Scholar 

  39. Yu, M., Wang, Z.J.: On the connection between the correction and weighting functions in the correction procedure via reconstruction method. J. Sci. Comput. 54(1), 227–244 (2012)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Foundation Graduate Research Fellowship Program, the Stanford Graduate Fellowships program, the National Science Foundation (Grants 0708071 and 0915006), the Air Force Office of Scientific Research (Grants FA9550-07-1-0195 and FA9550-10-1-0418) and NVIDIA for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Williams.

Appendices

Appendix A: Constructing the Energy Stable (VCJH) Correction Fields

In this section, a procedure will be presented for constructing energy stable (VCJH) correction fields \(\phi _{f,l}\) and \(\psi _{f,l}\) that satisfy Eqs. (43) and (53), respectively.

1.1 Preliminaries

Recall that \(\phi _{f,l} \equiv \hat{\nabla } \cdot \mathbf{h}_{f,l}\) and \(\psi _{f,l} \equiv \hat{\nabla } \cdot \mathbf{g}_{f,l}\). In accordance with these definitions, it may appear natural to first construct precise expressions for the correction functions \(\mathbf{h}_{f,l}\) and \(\mathbf{g}_{f,l}\), and thereafter apply the divergence operator \(\hat{\nabla }\) to these expressions in order to obtain \(\phi _{f,l}\) and \(\psi _{f,l}\). However, this is not the best approach, as \(\mathbf{h}_{f,l}\) and \(\mathbf{g}_{f,l}\) may not be unique. In particular, for \(p > 1\) there are an unlimited number of correction functions which have the same divergence (or effectively, the same correction field). In addition, the implementation of the VCJH approach only requires the precise formulation of the correction fields \(\phi _{f,l}\) and \(\psi _{f,l}\), and not of the correction functions themselves. Specifically, the VCJH approach only requires definitions of the normal components of the correction functions (\(\mathbf{h}_{f,l} \cdot \hat{\mathbf{n}}\) and \(\mathbf{g}_{f,l} \cdot \hat{\mathbf{n}}\)) which are given by Eqs. (23) and (24). In what follows, it will be shown that Eqs. (23), (24), (43), and (53) are sufficient for constructing precise definitions of \(\phi _{f,l}\) and \(\psi _{f,l}\).

1.2 Constructing the Correction Fields \(\phi _{f,l}\)

One may arrive at a procedure for constructing the correction fields \(\phi _{f,l}\) by manipulating Eq. (43) and utilizing the definition of \(\mathbf{h}_{f,l} \cdot \hat{\mathbf{n}}\) (Eqs. (23) and (24)). Recall from section 3, Lemma 3.1, that the correction functions \(\mathbf{h}_{f,l}\) and correction fields \(\phi _{f,l}\) are required to satisfy Eq. (43), which can be expanded as follows

$$\begin{aligned}&\sum _{v = 1}^{p+1} \sum _{w = 1}^{v} c_{vw} \, \hat{D}^{(p,v,w)} \left( \hat{\nabla } \cdot \hat{\mathbf{f}}^{C} \right) \hat{D}^{(p,v,w)} \left( \hat{\ell }_{j} \right) \nonumber \\&\quad = \int \limits _{\varvec{\Gamma }_S} \left( \hat{\mathbf{f}}^{C} \cdot \hat{\mathbf{n}} \right) \hat{\ell }_{j} \; d\varvec{\Gamma }_S - \int \limits _{\varvec{\Omega }_S} \left( \hat{\nabla } \cdot \hat{\mathbf{f}}^{C} \right) \hat{\ell }_{j} \; d\varvec{\Omega }_S \nonumber \\&\quad = \sum _{v = 1}^{p+1} \sum _{w = 1}^{v} c_{vw} \, \hat{D}^{(p,v,w)} \left( \sum _{f = 1}^{N_{fe}} \sum _{l = 1}^{N_{fp}} \left[ \left( \hat{\mathbf{f}}^{\star }_{f,l} - \hat{\mathbf{f}}^{D}_{f,l} \right) \cdot \hat{\mathbf{n}}_{f,l} \right] \, \phi _{f,l} \right) \hat{D}^{(p,v,w)} \left( \hat{\ell }_{j} \right) \nonumber \\&\quad = \int \limits _{\varvec{\Gamma }_S} \left( \sum _{f = 1}^{N_{fe}} \sum _{l = 1}^{N_{fp}} \left[ \left( \hat{\mathbf{f}}^{\star }_{f,l} - \hat{\mathbf{f}}^{D}_{f,l} \right) \cdot \hat{\mathbf{n}}_{f,l} \right] \, \mathbf{h}_{f,l} \cdot \hat{\mathbf{n}} \right) \hat{\ell }_{j} \; d\varvec{\Gamma }_S \nonumber \\&\qquad - \int \limits _{\varvec{\Omega }_S} \left( \sum _{f = 1}^{N_{fe}} \sum _{l = 1}^{N_{fp}} \left[ \left( \hat{\mathbf{f}}^{\star }_{f,l} - \hat{\mathbf{f}}^{D}_{f,l} \right) \cdot \hat{\mathbf{n}}_{f,l} \right] \, \phi _{f,l} \right) \hat{\ell }_{j} \; d\varvec{\Omega }_S. \end{aligned}$$
(144)

Upon rearranging and simplifying Eq. (144), one obtains the following

$$\begin{aligned} \sum _{v = 1}^{p+1} \sum _{w = 1}^{v} c_{vw} \, \hat{D}^{(p,v,w)} \left( \phi _{f,l} \right) \hat{D}^{(p,v,w)} \left( \hat{\ell }_{j} \right) = \int \limits _{\varvec{\Gamma }_S} \left( \mathbf{h}_{f,l} \cdot \hat{\mathbf{n}} \right) \hat{\ell }_{j} \; d\varvec{\Gamma }_S - \int \limits _{\varvec{\Omega }_S} \left( \phi _{f,l} \right) \hat{\ell }_{j} \; d\varvec{\Omega }_S. \nonumber \\ \end{aligned}$$
(145)

Here, each basis function \(\hat{\ell }_{j}\) is equal to the product of \(J_k\) and \(\ell _{j}\), each normal component of a correction function \((\mathbf{h}_{f,l} \cdot \hat{\mathbf{n}})\) is defined by Eq. (23) (with \(\mathbf{h}_{f,l}\) in place of \(\mathbf{g}_{f,l}\)), and each correction field \(\phi _{f,l}\) remains to be determined. In order to begin the process of computing \(\phi _{f,l}\), note that it is a degree \(p\) polynomial function which can be expressed as follows

$$\begin{aligned} \phi _{f,l} = \sum _{\jmath = 1}^{N_p} \sigma _{\jmath } \, L_{\jmath } \left( \hat{\mathbf{x}} \right) , \end{aligned}$$
(146)

where each \(\sigma _{\jmath }\) is a constant coefficient (yet to be computed) and each basis function \(L_{\jmath } \left( \hat{\mathbf{x}} \right) \) is a member of an orthonormal basis of degree \(p\) on the reference element \(\varvec{\Omega }_S\) defined as follows

$$\begin{aligned} L_{\jmath } \left( \hat{\mathbf{x}} \right)&= \sqrt{8} P_u \left( \hat{a} \right) P_v^{\left( 2u + 1,0\right) } \left( \hat{b} \right) \left( 1- \hat{b} \right) ^u P_w^{\left( 2u+2v+2,0\right) } \left( \hat{c} \right) \left( 1- \hat{c} \right) ^{u+v}, \\ \jmath&= 1 + \frac{\left( 11 + 12p + 3p^2 \right) u}{6} + \frac{\left( 2p + 3 \right) v}{2} + w - \frac{\left( 2 + p \right) u^2}{2} - uv - \frac{v^2}{2} + \frac{u^3}{6},\nonumber \\&0 \le u, \quad 0 \le v, \quad 0 \le w, \qquad u + v+ w \le p,\nonumber \end{aligned}$$
(147)

where \(P_n^{\left( \alpha , \beta \right) }\) is the normalized \(n^{th}\) order Jacobi polynomial (as defined in [19]), and where

$$\begin{aligned} \hat{a} = -2 \frac{\left( 1 + \hat{x} \right) }{\hat{y} + \hat{z}} -1, \qquad \hat{b} = 2 \frac{\left( 1 + \hat{y}\right) }{1 - \hat{z}} - 1, \qquad \hat{c} = \hat{z}. \end{aligned}$$
(148)

In addition, note that each function \(\hat{\ell }_{j}\) in Eq. (145) is a degree \(p\) polynomial which can be expressed as follows

$$\begin{aligned} \hat{\ell }_j = \sum _{\imath = 1}^{N_p} \gamma _{\imath } \, L_{\imath } \left( \hat{\mathbf{x}} \right) , \end{aligned}$$
(149)

where each constant coefficient \(\gamma _{\imath }\) is a known quantity because each function \(\hat{\ell }_j\) is a known quantity.

On substituting Eqs. (146) and (149) into Eq. (145), one obtains

$$\begin{aligned}&\sum _{v = 1}^{p+1} \sum _{w = 1}^{v} c_{vw} \, \hat{D}^{(p,v,w)} \left( \sum _{\jmath = 1}^{N_p} \sigma _{\jmath } \, L_{\jmath } \right) \hat{D}^{(p,v,w)} \left( \sum _{\imath = 1}^{N_p} \gamma _{\imath } \, L_{\imath } \right) \nonumber \\&\quad = \int \limits _{\varvec{\Gamma }_S} \left( \mathbf{h}_{f,l} \cdot \hat{\mathbf{n}} \right) \left( \sum _{\imath = 1}^{N_p} \gamma _{\imath } \, L_{\imath } \right) \; d\varvec{\Gamma }_S - \int \limits _{\varvec{\Omega }_S} \left( \sum _{\jmath = 1}^{N_p} \sigma _{\jmath } \, L_{\jmath } \right) \left( \sum _{\imath = 1}^{N_p} \gamma _{\imath } \, L_{\imath } \right) \; d\varvec{\Omega }_S, \end{aligned}$$
(150)

or equivalently

$$\begin{aligned}&\sum _{\jmath = 1}^{N_p} \sigma _{\jmath } \, \sum _{v = 1}^{p+1} \sum _{w = 1}^{v} c_{vw} \, \hat{D}^{(p,v,w)} \left( L_{\jmath } \right) \hat{D}^{(p,v,w)} \left( L_{\imath } \right) \nonumber \\&\quad = \int \limits _{\varvec{\Gamma }_S} \left( \mathbf{h}_{f,l} \cdot \hat{\mathbf{n}} \right) L_{\imath } \; d\varvec{\Gamma }_S - \sum _{\jmath = 1}^{N_p} \sigma _{\jmath } \, \int \limits _{\varvec{\Omega }_S} L_{\jmath } \; L_{\imath } \; d\varvec{\Omega }_S. \end{aligned}$$
(151)

Upon noting that \(L_{\imath }\) and \(L_{\jmath }\) are orthonormal polynomials, one may derive the following expression from Eq. (151)

$$\begin{aligned} \sum _{\jmath = 1}^{N_p} \sigma _{\jmath } \, \sum _{v = 1}^{p+1} \sum _{w = 1}^{v} c_{vw} \, \hat{D}^{(p,v,w)} \left( L_{\jmath } \right) \hat{D}^{(p,v,w)} \left( L_{\imath } \right) = -\sigma _{\imath } + \int \limits _{\varvec{\Gamma }_S} \left( \mathbf{h}_{f,l} \cdot \hat{\mathbf{n}} \right) L_{\imath } \; d\varvec{\Gamma }_S. \qquad \end{aligned}$$
(152)

Equation (152) holds for \(\imath = 1, \ldots , N_p\) and provides a system of \(N_p\) equations for the \(N_p\) unknown coefficients \(\sigma _{\jmath }\). Together, Eqs. (152) and (146) completely define \(\phi _{f,l}\).

1.3 Constructing the Correction Fields \(\psi _{f,l}\)

In following the approach of the previous section, one may arrive at a procedure for constructing the correction fields \(\psi _{f,l}\) by manipulating Eq. (53) and utilizing the definition of \(\mathbf{g}_{f,l} \cdot \hat{\mathbf{n}}\) (Eqs. (23) and (24)). Once these manipulations (which are omitted for the sake of brevity) are performed, one obtains the following formula for each field \(\psi _{f,l}\)

$$\begin{aligned} \psi _{f,l} = \sum _{\jmath = 1}^{N_p} \xi _{\jmath } \, L_{\jmath } \left( \hat{\mathbf{x}} \right) , \end{aligned}$$
(153)

where the \(N_p\) unknown coefficients \(\xi _{\jmath }\) can be obtained from the following system of \(\imath = 1, \ldots , N_p\) equations

$$\begin{aligned} \sum _{\jmath = 1}^{N_p} \xi _{\jmath } \, \sum _{v = 1}^{p+1} \sum _{w = 1}^{v} \kappa _{vw} \, \hat{D}^{(p,v,w)} \left( L_{\jmath } \right) \hat{D}^{(p,v,w)} \left( L_{\imath } \right) = -\xi _{\imath } + \int \limits _{\varvec{\Gamma }_S} \left( \mathbf{g}_{f,l} \cdot \hat{\mathbf{n}} \right) L_{\imath } \; d\varvec{\Gamma }_S. \qquad \end{aligned}$$
(154)

Appendix B: Energy Stable (VCJH) Filter Matrices

This section discusses the procedure for forming the energy stable (VCJH) filter matrices and examines the resulting structure of the filter matrices.

1.1 Procedure for Forming the Filter Matrices

The filters \(\mathbf{F}_1\) and \(\mathbf{F}_2\) are obtained from the matrices \(\mathbf{M}^{k}, \mathcal M ^{k}, \mathbf{K}^{k}\), and \(\mathcal K ^{k}\) via Eq. (142). The mass matrices \(\mathbf{M}^{k}\) and \(\mathcal M ^{k}\) can be constructed from inner products of the nodal basis functions \(\ell _j \left( \hat{\mathbf{x}} \right) \) in accordance with Eq. (70). However, it is often difficult to compute the nodal basis functions \(\ell _j \left( \hat{\mathbf{x}} \right) \) directly, and one is often better served by using the orthonormal basis functions \(L_{j} \left( \hat{\mathbf{x}} \right) \) in their place. In particular, one may use the orthonormal basis functions to define a ‘Vandermonde matrix’ \(\mathbf{V}^k\) which has the following entries

$$\begin{aligned}{}[\mathbf{V}^k]_{ij} = L_j \left( \hat{\mathbf{x}}_i \right) , \end{aligned}$$
(155)

and next, one may use \(\mathbf{V}^k\) to compute the mass matrices as follows

$$\begin{aligned} \mathbf{M}^{k}&= J_k \left( \mathbf{V}^k \left( \mathbf{V}^k \right) ^T \right) ^{-1}, \end{aligned}$$
(156)
$$\begin{aligned} \mathcal M ^k&= J_k \begin{bmatrix} \left( \mathbf{V}^k \left( \mathbf{V}^k \right) ^T \right) ^{-1}&\mathbf 0&\mathbf 0 \\ \mathbf{0}&\left( \mathbf{V}^k \left( \mathbf{V}^k \right) ^T \right) ^{-1}&\mathbf 0 \\ \mathbf{0}&\mathbf{0}&\left( \mathbf{V}^k \left( \mathbf{V}^k \right) ^T \right) ^{-1} \end{bmatrix}. \end{aligned}$$
(157)

Note that the derivation of Eqs. (156) and (157) is discussed in detail in [19].

In a similar fashion, one may construct expressions for \(\mathbf{K}^{k}\) and \(\mathcal K ^{k}\) in terms of the orthonormal basis functions. Recall that Eqs. (76) and (77) provide expressions for \(\mathbf{K}^{k}\) and \(\mathcal K ^{k}\) in terms of the matrices \(\left( \hat{\mathbf{D}}^{(p,v,w)} \right) ^{T} \hat{\mathbf{D}}^{(p,v,w)}\), where each \(\hat{\mathbf{D}}^{(p,v,w)}\) is a matrix which has the following entries

$$\begin{aligned}{}[\hat{\mathbf{D}}^{(p,v,w)}]_{ij} = \hat{D}^{(p,v,w)} \left( \ell _j \left( \hat{\mathbf{x}} \right) \right) \bigg |_{\hat{\mathbf{x}}_i}. \end{aligned}$$
(158)

One may use the orthonormal basis functions \(L_{j} \left( \hat{\mathbf{x}} \right) \) to construct similar matrices \(\hat{\hat{\mathbf{D}}}^{(p,v,w)}\) which have the following entries

$$\begin{aligned}{}[\hat{\hat{\mathbf{D}}}^{(p,v,w)}]_{ij} = \hat{D}^{(p,v,w)} \left( L_j \left( \hat{\mathbf{x}} \right) \right) \bigg |_{\hat{\mathbf{x}}_i}. \end{aligned}$$
(159)

One may then relate each \(\hat{\hat{\mathbf{D}}}^{(p,v,w)}\) to each \(\hat{\mathbf{D}}^{(p,v,w)}\) by using the following identity

$$\begin{aligned} \hat{\mathbf{D}}^{(p,v,w)} = \hat{\hat{\mathbf{D}}}^{(p,v,w)} \, \left( \mathbf{V}^k \right) ^{-1}. \end{aligned}$$
(160)

Note that the derivation of Eq. (160) is discussed in detail in [19].

Upon substituting Eq. (160) into Eqs. (76) and (77), one obtains the following expressions for \(\mathbf{K}^{k}\) and \(\mathcal K ^{k}\)

$$\begin{aligned} \mathbf{K}^k&= \frac{J_k}{N_p} \sum _{v = 1}^{p+1} \sum _{w = 1}^{v} c_{vw} \left( \mathbf{V}^k \right) ^{-T} \left( \hat{\hat{\mathbf{D}}}^{(p,v,w)} \right) ^{T} \hat{\hat{\mathbf{D}}}^{(p,v,w)} \, \left( \mathbf{V}^k \right) ^{-1}, \end{aligned}$$
(161)
$$\begin{aligned} \mathcal K ^k&= \frac{J_k}{N_p} \sum _{v = 1}^{p+1} \sum _{w = 1}^{v} \kappa _{vw} \begin{bmatrix} \left( \mathbf{V}^k \right) ^{-T} \left( \hat{\hat{\mathbf{D}}}^{(p,v,w)} \right) ^{T} \hat{\hat{\mathbf{D}}}^{(p,v,w)} \, \left( \mathbf{V}^k\right) ^{-1} \qquad \qquad \qquad \mathbf 0 \qquad \qquad \qquad \mathbf 0 \\ \mathbf 0 \qquad \qquad \qquad \left( \mathbf{V}^k\right) ^{-T} \left( \hat{\hat{\mathbf{D}}}^{(p,v,w)} \right) ^{T} \hat{\hat{\mathbf{D}}}^{(p,v,w)} \, \left( \mathbf{V}^k\right) ^{-1} \qquad \qquad \qquad \mathbf 0 \\ \mathbf 0 \qquad \qquad \qquad \mathbf 0 \qquad \qquad \qquad \left( \mathbf{V}^k\right) ^{-T} \left( \hat{\hat{\mathbf{D}}}^{(p,v,w)} \right) ^{T} \hat{\hat{\mathbf{D}}}^{(p,v,w)} \, \left( \mathbf{V}^k\right) ^{-1} \end{bmatrix}. \end{aligned}$$
(162)

Next, on substituting Eqs. (161), (162), (156), and (157) into Eq. (142), one obtains the following expressions for \(\mathbf{F}_1\) and \(\mathbf{F}_2\)

$$\begin{aligned} \mathbf{F}_1&= \left( \mathbf{I}+ \frac{1}{N_p} \sum _{v = 1}^{p+1} \sum _{w = 1}^{v} c_{vw} \; \mathbf{V}^k \left( \hat{\hat{\mathbf{D}}}^{(p,v,w)} \right) ^{T} \hat{\hat{\mathbf{D}}}^{(p,v,w)} \, \left( \mathbf{V}^k \right) ^{-1} \right) ^{-1} \nonumber \\&= \mathbf{V}^k \, \hat{\hat{ \mathbf{F}}}_1 \left( \mathbf{V}^k \right) ^{-1}, \end{aligned}$$
(163)

where

$$\begin{aligned} \hat{\hat{ \mathbf{F}}}_1 = \left( \mathbf{I}+ \frac{1}{N_p} \sum _{v = 1}^{p+1} \sum _{w = 1}^{v} c_{vw} \; \left( \hat{\hat{\mathbf{D}}}^{(p,v,w)} \right) ^{T} \hat{\hat{\mathbf{D}}}^{(p,v,w)} \, \right) ^{-1}, \end{aligned}$$
(164)

and

$$\begin{aligned} \nonumber \mathbf{F}_{2}&= \left( \mathcal I + \frac{1}{N_p} \sum _{v = 1}^{p+1} \sum _{w = 1}^{v} \kappa _{vw} \begin{bmatrix} \mathbf{V}^k \left( \hat{\hat{\mathbf{D}}}^{(p,v,w)} \right) ^{T} \hat{\hat{\mathbf{D}}}^{(p,v,w)} \, \left( \mathbf{V}^k\right) ^{-1} \qquad \qquad \qquad \mathbf 0 \qquad \qquad \qquad \mathbf 0 \\ \mathbf 0 \qquad \qquad \qquad \mathbf{V}^k \left( \hat{\hat{\mathbf{D}}}^{(p,v,w)} \right) ^{T} \hat{\hat{\mathbf{D}}}^{(p,v,w)} \, \left( \mathbf{V}^k\right) ^{-1} \qquad \qquad \qquad \mathbf 0 \\ \mathbf 0 \qquad \qquad \qquad \mathbf 0 \qquad \qquad \qquad \mathbf{V}^k \left( \hat{\hat{\mathbf{D}}}^{(p,v,w)} \right) ^{T} \hat{\hat{\mathbf{D}}}^{(p,v,w)} \, \left( \mathbf{V}^k\right) ^{-1} \end{bmatrix} \right) ^{-1} \\&= \mathcal V ^k \, \hat{\hat{\mathbf{F}}}_2 \left( \mathcal V ^k \right) ^{-1}, \end{aligned}$$
(165)

where

$$\begin{aligned} \hat{\hat{\mathbf{F}}}_2 = \left( \mathcal I + \frac{1}{N_p} \sum _{v = 1}^{p+1} \sum _{w = 1}^{v} \kappa _{vw} \begin{bmatrix} \left( \hat{\hat{\mathbf{D}}}^{(p,v,w)} \right) ^{T} \hat{\hat{\mathbf{D}}}^{(p,v,w)} \qquad \qquad \qquad \mathbf 0 \qquad \qquad \qquad \mathbf 0 \\ \mathbf 0 \qquad \qquad \qquad \left( \hat{\hat{\mathbf{D}}}^{(p,v,w)} \right) ^{T} \hat{\hat{\mathbf{D}}}^{(p,v,w)} \qquad \qquad \qquad \mathbf 0 \\ \mathbf 0 \qquad \qquad \qquad \mathbf 0 \qquad \qquad \qquad \left( \hat{\hat{\mathbf{D}}}^{(p,v,w)} \right) ^{T} \hat{\hat{\mathbf{D}}}^{(p,v,w)} \end{bmatrix} \right) ^{-1}, \end{aligned}$$
(166)

and

$$\begin{aligned} \mathcal V ^k = \begin{bmatrix} \mathbf{V}^k&\mathbf 0&\mathbf 0 \\ \mathbf 0&\mathbf{V}^k&\mathbf 0 \\ \mathbf 0&\mathbf 0&\mathbf{V}^k \end{bmatrix}. \end{aligned}$$
(167)

Note that Eqs. (164) and (166) define new filtering matrices \(\hat{\hat{\mathbf{F}}}_1\) and \(\hat{\hat{\mathbf{F}}}_2\). These matrices can be viewed as filters which act on the orthonormal basis (in contrast to \(\mathbf{F}_1\) and \(\mathbf{F}_2\) which can be viewed as filters which act on the nodal basis). Conveniently, the two sets of filters are related via left and right multiplication by the Vandermonde matrix and its inverse (as shown in Eqs. (163) and (165)).

Now, having established a method for constructing \(\mathbf{F}_1\) and \(\mathbf{F}_2\) using the orthornormal basis (via \(\hat{\hat{\mathbf{F}}}_1\) and \(\hat{\hat{\mathbf{F}}}_2\)), one may obtain insights into the overall effects of the filtering process by examining the sparsity patterns of \(\hat{\hat{\mathbf{F}}}_1\) and \(\hat{\hat{\mathbf{F}}}_2\).

1.2 Sparsity Patterns of the Filter Matrices

On evaluating Eq. (164), one finds that \(\hat{\hat{\mathbf{F}}}_1\) has the following block structure

$$\begin{aligned} \hat{\hat{\mathbf{F}_1}} = \begin{bmatrix} \mathbf{I}_{1}^{B}&\mathbf 0 \\ \mathbf 0&\mathbf{F}_{1}^{B} \end{bmatrix}, \end{aligned}$$
(168)

where \(\mathbf{I}_{1}^{B} \in \mathbb R ^{N_p^{\ell } \times N_p^{\ell }}\) is an identity matrix, \(\mathbf{F}_{1}^{B} \in \mathbb R ^{N_p^{u} \times N_p^{u}}\) is a dense matrix of filtering coefficients, \(N_p^{\ell } = N_p - N_p^{u}\) is the number of orthonormal basis functions of degree \(\le \left( p - 1\right) \), and \(N_p^{u} = \frac{1}{2} \left( p + 1\right) \left( p + 2 \right) \) is the number of orthonormal basis functions of degree \(p\). The structure of \(\hat{\hat{\mathbf{F}_1}}\) ensures that only the degree \(p\) orthonormal basis functions are effected by the filtering matrix. All basis functions of degree \(\le \left( p-1\right) \) are multiplied by the identity matrix and remain unaffected.

Similarly, on evaluating Eq. (166), one finds that \(\hat{\hat{\mathbf{F}}}_2\) has the following structure

$$\begin{aligned} \hat{\hat{\mathbf{F}_2}} = \left[ \begin{array}{llllll} \mathbf{I}_{2}^B &{} \mathbf 0 &{} \cdots &{} \cdots &{} \cdots &{} \mathbf 0 \\ \mathbf 0 &{} \mathbf{F}_{2}^B &{} \ddots &{} &{} &{} \vdots \\ \vdots &{} \ddots &{} \mathbf{I}_{2}^B &{} \mathbf 0 &{} &{} \vdots \\ \vdots &{} &{} \mathbf 0 &{} \mathbf{F}_{2}^B &{} \ddots &{} \vdots \\ \vdots &{} &{} &{} \ddots &{} \mathbf{I}_{2}^B &{} \mathbf 0 \\ \mathbf 0 &{} \cdots &{} \cdots &{} \cdots &{} \mathbf 0 &{} \mathbf{F}_{2}^B\\ \end{array}\right] , \end{aligned}$$
(169)

where \(\mathbf{I}_{2}^{B} \in \mathbb R ^{N_p^{\ell } \times N_p^{\ell }}\) is an identity matrix and \(\mathbf{F}_{2}^{B} \in \mathbb R ^{N_p^{u} \times N_p^{u}}\) is a dense matrix of filtering coefficients. The structure of \(\hat{\hat{\mathbf{F}_2}}\) is similar to the structure of \(\hat{\hat{\mathbf{F}_1}}\), as the structure of \(\hat{\hat{\mathbf{F}}}_2\) also ensures that only the degree \(p\) orthonormal basis functions are effected by the filtering matrix.

In summary, the filters \(\mathbf{F}_1\) and \(\mathbf{F}_2\) are related (via the Vandermonde matrix) to the filters \(\hat{\hat{\mathbf{F}_1}}\) and \(\hat{\hat{\mathbf{F}_2}}\) which act on the orthonormal basis functions \(L_j (\hat{\mathbf{x}})\), and effect only the highest (degree \(p\)) modes of the residual and the auxiliary variable, respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, D.M., Jameson, A. Energy Stable Flux Reconstruction Schemes for Advection–Diffusion Problems on Tetrahedra. J Sci Comput 59, 721–759 (2014). https://doi.org/10.1007/s10915-013-9780-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9780-2

Keywords

Mathematics Subject Classification (2000)

Navigation