Abstract
This paper deals with the numerical resolution of elliptic problems in unbounded domains using inverted finite elements. In opposition to conventional approaches which are based on the truncation of the domain, the suggested method keeps the domain unbounded and is based on a description of the asymptotic behavior in an appropriate functional framework. The method and its mathematical properties are presented first, and some computational examples are carried out. The obtained numerical results demonstrate the efficiency of the method.








Similar content being viewed by others
References
Alliot, F., Amrouche, C.: Problème de Stokes dans \({ \rm R}^n\) et espaces de Sobolev avec poids. C. R. Acad. Sci. Paris Sér. I Math. 325(12), 1247–1252 (1997)
Amrouche, C., Girault, V., Giroire, J.: Weighted Sobolev spaces for Laplace’s equation in \({\rm R}^n\). J. Math. Pures Appl. (9) 73(6), 579–606 (1994)
Arar, N., Boulmezaoud, T.Z.: Eigenfunctions of a weighted Laplace operator in the whole space. J. Math. Anal. Appl. 400(1), 161–173 (2013)
Bayliss, A., Turkel, E.: Radiation boundary conditions for wave-like equations. Commun. Pure Appl. Math. 33, 707–725 (1980)
Beer, G., Smith, I.M., Duenser, C.: The boundary element method with programming: for engineers and scientists, vol. 72. Springer, Berlin (2008)
Bettess, P., Zienkiewicz, O.C.: Diffraction and refraction of surface waves using finite and infinite elements. Int. J. Numer. Methods Eng. 11(8), 1271–1290 (1977)
Boulmezaoud, T.Z.: On the Stokes system and on the biharmonic equation in the half-space: an approach via weighted Sobolev spaces. Math. Methods Appl. Sci. 25(5), 373–398 (2002)
Boulmezaoud, T.Z.: On the Laplace operator and on the vector potential problems in the half-space: an approach using weighted spaces. Math. Methods Appl. Sci. 26(8), 633–669 (2003)
Boulmezaoud, T.Z.: Inverted finite elements: a new method for solving elliptic problems in unbounded domains. M2AN Math. Model. Numer. Anal. 39(1), 109–145 (2005)
Boulmezaoud, T.Z., Babatin, M.M., Mziou, S.: Approximation of singular and radial elliptic problems in unbounded domains (in preparation)
Boulmezaoud, T.Z., Medjden, M.: Weighted \(L^p\) theory of the Stokes and the bilaplacian operators in the half-space. J. Math. Anal. Appl. 342(1), 220–245 (2008)
Boulmezaoud, T.Z., Razafison, U.: On the steady Oseen problem in the whole space. Hiroshima Math. J. 35(3), 371–401 (2005)
Brebbia, C.A., Telles, J.C.F., Wrobel, L.C.: Boundary Element Techniques. Springer, Berlin (1984)
Burnett, D.S.: A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion. J. Acoust. Soc. Am. 96(5, part 1), 2798–2816 (1994)
Colton, D.L., Kress, R.: Integral Equation Methods in Scattering Theory. Pure and Applied Mathematics. Wiley, New York (1983)
Enquist, B., Majda, A.: Radiation boundary conditions for acoustic and elastic wave calculations. Comm. Pure Appl. Math. 32, 313–357 (1979)
Gerdes, K.: A review of infinite element methods for exterior Helmholtz problems. Finite elements for wave problems. J. Comput. Acoust. 8(1), 43–62 (2000)
Gerdes, K., Demkowicz, L.: Solution of \(3\)D-Laplace and Helmholtz equations in exterior domains using \(hp\)-infinite elements. Comput. Methods Appl. Mech. Eng. 137(3–4), 239–273 (1996)
Giroire, J.: Etude de quelques problèmes aux limites extérieurs et résolution par équations intégrales. Thèse de Doctorat d’Etat. Université Pierre et Marie Curie, Paris (1987)
Hanouzet, B.: Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46, 227–272 (1971)
Ihlenburg, F.: Finite Element Analysis of Acoustic Scattering, vol. 132 of Applied Mathematical Sciences. Springer, New York (1998)
Kondratev, V.A.: Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16, 227–313 (1967)
Kufner, A.: Weighted Sobolev Spaces. A Wiley-Interscience Publication. Wiley, New York (1985)
Toselli, A.: A new family of exponential infinite elements for the analysis of lossless electromagnetic waveguides. Comput. Methods Appl. Mech. Eng. 140, 221–235 (1997)
Tsynkov, S.V.: Numerical solution of problems on unbounded domains. A review. Appl. Numer. Math. 27(4), 465–532, Absorbing boundary conditions (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Boulmezaoud, T.Z., Mziou, S. & Boudjedaa, T. Numerical Approximation of Second-Order Elliptic Problems in Unbounded Domains. J Sci Comput 60, 295–312 (2014). https://doi.org/10.1007/s10915-013-9798-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-013-9798-5