Skip to main content
Log in

A Local Pressure Boundary Condition Spectral Collocation Scheme for the Three-Dimensional Navier–Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A spectral collocation scheme for the three-dimensional incompressible \(({\varvec{u}},p)\) formulation of the Navier–Stokes equations, in domains \(\varOmega \) with a non-periodic boundary condition, is described. The key feature is the high order approximation, by means of a local Hermite interpolant, of a Neumann boundary condition for use in the numerical solution of the pressure Poisson system. The time updates of the velocity \({\varvec{u}}\) and pressure \(p\) are decoupled as a result of treating the pressure gradient in the momentum equation explicitly in time. The pressure update is computed from a pressure Poisson equation. Extension of the overall methodology to the Boussinesq system is also described. The uncoupling of the pressure and velocity time updates results in a highly efficient scheme that is simple to implement and well suited for simulating moderate to high Reynolds and Rayleigh number flows. Accuracy checks are presented, along with simulations of the lid-driven cavity flow and a differentially heated cavity flow, to demonstrate the scheme produces accurate three-dimensional results at a reasonable computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Albensoeder, S., Kuhlmann, H.C.: Accurate three-dimensional lid-driven cavity flow. J. Comput. Phys. 206, 536–558 (2005)

    Article  MATH  Google Scholar 

  2. Bell, J., Colella, P., Glaz, H.: A second order projection method for the incompressible Navier–Stokes equations. J. Comput. Phys. 85, 257–283 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York (2001)

    MATH  Google Scholar 

  4. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  5. Chorin, A.: Numerical solution of Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  6. Deville, M., Fischer, P., Mund, E.: High-order Methods for Incompressible Fluid Flow. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  7. Ehrenstein, U., Peyret, R.: A Chebyshev collocation method for the Navier–Stokes equations with application to double-diffusive convection. Int. J. Numer. Meth. Fluids 9, 427–452 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  9. Gottlieb, D., Lutsman, L.: The spectrum of the Chebyshev collocation operator for the heat equation. SIAM J. Numer. Anal. 20, 909–921 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gresho, P.M., Sani, R.L.: On pressure boundary conditions for the incompressible Navier–Stokes equations. Intern. J. Numer. Methods Fluids 7, 1111–1145 (1987)

    Article  MATH  Google Scholar 

  11. Henshaw, W.D., Kreiss, H.-O., Reyna, L.G.: A fourth-order accurate difference approximation for the incompressible Navier–Stokes equations. Comput. Fluids 23, 575–593 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hesthaven, J., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  13. Johnston, H., Liu, J.-G.: A finite difference scheme for incompressible flow based on local pressure boundary conditions. J. Comput. Phys. 180, 120–154 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Johnston, H., Liu, J.-G.: Accurate, stable and efficient Navier–Stokes solvers based on explicit treatment of the pressure term. J. Comput. Phys. 199, 221–259 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Karniadakis, G.E., Sherwin, S.: Spectral/\(hp\) Element Methods for Computational Fluid Dynamics, 2nd edn. Oxford University Press, New York (2005)

    Book  Google Scholar 

  16. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308–323 (1985)

    Google Scholar 

  17. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  18. Ku, H.C., Hirsh, R.S., Taylor, H.D.: A pseudo-spectral method for solution of three-dimensional incompressible Navier–Stokes equations. J. Comput. Phys. 70, 439–462 (1987)

    Article  MATH  Google Scholar 

  19. Leiriche, E.: Direct numerical simulation in a lid-driven cavity at high Reynolds number. J. Sci. Comput. 27, 335–345 (2006)

    Article  MathSciNet  Google Scholar 

  20. Liu, J.-G., Liu, J., Pego, R.: Stability and convergence of efficient Navier–Stokes solver via a commutator estimate. Commun. Pure Appl. Math. 60, 1443–1487 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lynch, R.E., Rice, J.R., Thomas, D.H.: Direct solution of partial difference equations by tensor product methods. Numer. Math. 6, 185–199 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  22. Orszag, S.A., Israeli, M., Deville, M.: Boundary conditions for incompressible flows. J. Sci. Comput. 1, 75–111 (1986)

    Article  MATH  Google Scholar 

  23. Petersson, N.A.: Stability of pressure boundary conditions for Stokes and Navier–Stokes equations. J. Comput. Phys. 224, 1064–1094 (2001)

    Google Scholar 

  24. Peyret, R.: Spectral Methods for Incompressible Viscous Flow. Springer, New York (2002)

    Book  MATH  Google Scholar 

  25. Sani, R.L., Shen, J., Pironneau, O., Gresho, P.M.: Pressure boundary condition for the time-dependent incompressible Navier–Stokes equations. Intern. J. Numer. Methods Fluids 50, 673–682 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Spalart, P.: Direct simulation of a turbulent boundary layer up to \(R_\theta =1410\). J. Fluid Mech. 187, 61–98 (1988)

    Article  MATH  Google Scholar 

  27. Spalart, P.: Theoretical and numerical study of a three-dimensional turbulent boundary layer. J. Fluid Mech. 205, 319–340 (1989)

    Article  Google Scholar 

  28. Temam, R.: Sur l’approximation de la solution des equation de Navier–Stokes Par la Méthode Des Fractionnarires II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)

    MATH  MathSciNet  Google Scholar 

  29. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2001)

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by NSF DMS-1115420, NSFC 11271281 (C. Wang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Johnston.

Appendix: A Derivative Formulas for Lagrange Interpolation Basis Function

Appendix: A Derivative Formulas for Lagrange Interpolation Basis Function

Given K, let \(\{l_k(y)\}_{k=0}^K\) denote the \(K\!+\!1\) Lagrange interpolation basis functions based on the \(K\!+\!1\) distinct points \(\{y_j\}_{j=0}^K\). The functions are defined by \( l_k(y) = \displaystyle { \mathop {\prod _{i=0}^{K}}_{ i \ne k} \frac{y-y_i}{y_k-y_i}},\) and satisfy \(l_k(y_j)=\delta _{k,j}\) for \(0 \le k,j \le K\). A direct calculation gives

(42)

and

(43)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, H., Wang, C. & Liu, JG. A Local Pressure Boundary Condition Spectral Collocation Scheme for the Three-Dimensional Navier–Stokes Equations. J Sci Comput 60, 612–626 (2014). https://doi.org/10.1007/s10915-013-9808-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9808-7

Keywords

Navigation