Skip to main content
Log in

Stability and Convergence of Modified Du Fort–Frankel Schemes for Solving Time-Fractional Subdiffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A class of modified Du Fort–Frankel-type schemes is investigated for fractional subdiffusion equations in the Jumarie’s modified Riemann–Liouville form with constant, variable or distributed fractional order. New explicit difference methods are constructed by combining the \(L1\) approximation of the modified fractional derivative with the idea of Du Fort–Frankel scheme, well-known for ordinary diffusion equations. Unconditional stability of the explicit methods is established in the sense of a discrete energy norm. The proposed schemes are shown to be convergent under the time-step (consistency) restriction of the classical Du Fort–Frankel scheme. Numerical examples are included to support our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagley, R.L., Torvik, P.J.: On the existence of the order domain and the solution of distributed order equations (Parts I, II). Int. J. Appl. Mech. 2(865–882), 965–987 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Caputo, M.: Mean fractional-order-derivatives differential equations and filters. Annali dell’Universita di Ferrara 41(1), 73–84 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Caputo, M.: Distributed order differential equations modelling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 4, 421–442 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66(046129), 1–6 (2002)

    Google Scholar 

  6. Chen, C.M., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation. SIAM J. Sci. Comput. 32, 1740–1760 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, C., Liu, F., Anh, V., Turner, I.: Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation. Math. Comput. 81, 345–366 (2011)

    Article  MathSciNet  Google Scholar 

  8. Ciesielski, M., Leszczynski, J.: Numerical simulations of anomalous diffusion. In: Proceedings of the 15th Conference on Computer Methods in Mechanics. Wisla, Polonia. (2003). arXiv:math-ph/0309007v1

  9. Coimbra, C.F.M.: Mechanics with variable-order differential operators. Annalen der Physik 12, 692–703 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Diethelm, K., Ford, N.J.: Numerical solution methods for distributed order differential equations. Fract. Calc. Appl. Anal. 4, 531–542 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Yu.: Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Eng. 194, 743–773 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225(1), 96–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gorenflo, R., Mainardi, F., et al.: Time-fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29, 129 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheologica Acta (2005). doi:10.1007/s00397-005-0043-5

  15. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  16. Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of nondifferentiable functions further results. Comput. Math. Appl. 51, 1367–1376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jumarie, G.: Fractional partial differential equations and modified Riemann–Liouville derivative new methods for solution. J. Appl. Math. Comput. 24, 31–48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jumarie, G.: Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions. Appl. Math. Model. 32, 836–859 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jumarie, G.: Table of some basic fractional calculus formulae derived from a modiffed Riemann–Liouville derivative for non-differentiable functions. Appl. Math. Lett. 22, 378–385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jumarie, G.: Cauchys integral formula via modified Riemann–Liouville derivative for analytic functions of fractional order. Appl. Math. Lett. 23, 1444–1450 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Langlands, T.A.M.: Solution of a modified fractional diffusion equation. Phys. A 367, 136–144 (2006)

    Article  MathSciNet  Google Scholar 

  23. Lin, Y., Li, X., Xu, C.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80, 1369–1396 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lorenzo, C.F., Hartley, T.T.: Variable-order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Murillo, J.Q., Yuste, S.B.: On three explicit difference schemes for fractional diffusion and diffusion-wave equations. Phys. Scr. T 136, 014025 (2009)

    Article  Google Scholar 

  26. Murillo, J.Q., Yuste, S.B.: On an explicit difference method for fractional diffusion and diffusion-wave equations. In: Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. San Diego, California, (2009)

  27. Mustapha, K., AlMutawa, J.: A finite difference method for an anomalous sub-diffusion equation, theory and applications. Numer. Algorithm 61, 525–543 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mustapha, K., McLean, W.: Discontinuous Galerkin method for an evolution equation with a memory term of positive type. Math. Comput. 78, 1975–1995 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Naber, M.: Distributed order fractional subdiffusion. Fractals 12, 23–32 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Oldham, K., Spanier, J.: The fractional calculus: theory and applications of differentiation and integration to arbitrary order. In: Mathematics in Science and Engineering, vol. 111. Academic Press, New York (1974)

  32. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  33. Samko, S.G.: Fractional integration and differentiation of variable order. Anal. Math. 21, 213–236 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shen, S., Liu, F., Chen, J., Turner, I., Anh, V.: Numerical techniques for the variable order time fractional diffusion equation. Appl. Math. Comput. 218(22), 10861–10870 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sokolov, I.M., Chechkin, A.V., Klafter, J.: Distributed-order fractional kinetics. Acta Physica Polonica 35, 1323–1341 (2004)

    Google Scholar 

  36. Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)

    Article  Google Scholar 

  37. Sun, H., Chen, W., Li, C., Chen, Y.: Finite difference schemes for variable-order time fractional diffusion equation. Int. J. Bifurc. Chaos 22(4), 1250085 (2012)

    Article  MathSciNet  Google Scholar 

  38. Umarov, S., Steinberg, S.: Random walk model sassociated with distributed fractional order differential equations. Lect. Notes Monogr. Ser. 51, 117–127 (2006)

    Article  MathSciNet  Google Scholar 

  39. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42(5), 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216(1), 264–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimates of Crank–Nicolson-type difference schemes for the sub-diffusion equation. SIAM J. Numer. Anal. 49, 2302–2322 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, Y.N., Sun, Z.Z., Zhao, X.: Compact alternating direction implicit schemes for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical method for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-lin Liao.

Additional information

Hong-lin Liao and Han-sheng Shi are supported by National Science Foundation for Young Scientists of China (No. 11001271, 11201239), and Ya-nan Zhang is supported by National Science Foundation of China (No. 11326229) and China Postdoctoral Science Foundation (2013M530265).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, Hl., Zhang, Yn., Zhao, Y. et al. Stability and Convergence of Modified Du Fort–Frankel Schemes for Solving Time-Fractional Subdiffusion Equations. J Sci Comput 61, 629–648 (2014). https://doi.org/10.1007/s10915-014-9841-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9841-1

Keywords

Navigation