Skip to main content
Log in

Superconvergence Analysis for Linear Tetrahedral Edge Elements

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Back in 1992, Monk (Numer Math 63: 243–261, 1992) found that the numerical solution of time-harmonic Maxwell equations shows a superconvergence result \(O(h^2)\) in the discrete maximum norm when the problem is solved by Nédé1ec’s first type linear tetrahedral elements (i.e., the so-called edge elements). However, Monk did not provide any theoretical investigation of this superconvergence phenomenon. Since then, superconvergence analysis has been carried out for edge elements on hexahedral grids and triangular grids. Until now, the theoretical justification of the superconvergence phenomenon for linear edge elements on tetrahedral grids is still open (Monk in Finite element methods for Maxwell’s equations. Oxford University Press, Oxford, 2003, p.188) . The paper is motivated by this open issue. Our major goal of this paper is to fill this gap by providing a delicate theoretical analysis of this superconvergence phenomenon. We further provide some numerical results to demonstrate this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adjerid, S., Baccouch, M.: The discontinuous Galerkin method for two-dimensional hyperbolic problems. Part I: superconvergence error analysis. J. Sci. Comput. 33, 75–113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley Interscience, New York (2000)

    Book  MATH  Google Scholar 

  3. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, Part II: General unstructured grids. SIAM J. Numer. Anal. 41, 2313–2332 (2004)

    Article  MathSciNet  Google Scholar 

  4. Celiker, F., Zhang, Z., Zhu, H.: Nodal superconvergence of SDFEM for singularly perturbed problems. J. Sci. Comput. 50, 405–433 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, C.M., Huang, Y.: High Accuracy Theory of Finite Element Methods (in Chinese). Hunan Science Press, China (1995)

    Google Scholar 

  6. Cheng, Y., Shu, C.-W.: Superconvergence and time evolution of discontinuous Galerkin finite element solutions. J. Comput. Phys. 227, 9612–9627 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chung, E.T., Ciarlet Jr, P., Yu, T.F.: Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell’s equations on Cartesian grids. J. Comput. Phys. 235, 14–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, 2nd edn. Society for Industrial and Applied Mathematics (2002)

  9. Cockburn, B., Dong, B., Guzmán, J., Restelli, M., Sacco, R.: Superconvergent and optimally convergent LDG-hybridizable discontinuous Galerkin methods for convection-diffusion-reaction problems. SIAM J. Sci. Comput. 31, 3827–3846 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ewing, R.E., Lin, Y., Sun, T., Wang, J., Zhang, S.: Sharp L2 -error estimates and superconvergence of mixed finite element methods for non-Fickian flows in porous media. SIAM J. Numer. Anal. 40, 1538–1560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, Y., Li, J., Lin, Q.: Superconvergence analysis for time-dependent Maxwell’s equations in metamaterials. Numer. Methods Partial Differ. Equ. 28, 1794–1816 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Huang, Y., Li, J., Wu, C.: Averaging for superconvergence: verification and application of 2D edge elements to Maxwell’s equations in metamaterials. Comput. Methods Appl. Mech. Eng. 255, 121–132 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, Y., Li, J., Yang, W., Sun, S.: Superconvergence of mixed finite element approximations to 3-D Maxwell’s equations in metamaterials. J. Comput. Phys. 230, 8275–8289 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Krizek, M., Neittaanamäki, P., Stenberg, R. (eds.): Finite Element Methods: Superconvergence. Postprocessing and A Posteriori Estimates. Marcel Dekker, New York (1998)

  15. Li, J., Huang, Y., Yang, W.: An adaptive edge finite element method for electromagnatic cloaking simulation. J. Comput. Phys. 249, 216–232 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lin, Q., Li, J.: Superconvergence analysis for Maxwell’s equations in dispersive media. Math. Comput. 77, 757–771 (2008)

    Article  MATH  Google Scholar 

  17. Lin, Q., Yan, N.: Global superconvergence for Maxwell’s equations. Math. Comput. 69, 159–176 (1999)

    Article  MathSciNet  Google Scholar 

  18. Lin, Q., Yan, N.: The Construction and Analysis of High Accurate Finite Element Methods (in Chinese). Hebei University Press, Hebei, China (1996)

    Google Scholar 

  19. Monk, P.: A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63, 243–261 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Monk, P.: Superconvergence of finite element approximations to Maxwells equations. Numer. Methods Partial Differ. Equ. 10, 793–812 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  22. Qiao, Z., Yao, C., Jia, S.: Superconvergence and extrapolation analysis of a nonconforming mixed finite element approximation for time-harmonic Maxwell’s equations. J. Sci. Comput. 46, 1–19 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wahlbin, L.B.: Superconvergence in Galerkin Finite Element Methods. Springer, Berlin (1995)

    MATH  Google Scholar 

  24. Yang, Y., Shu, C.-W.: Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50, 3110–3133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, Z.: (ed.): Special issues of Superconvergence and a posteriori error estimates in finite element methods. Int. J. Numer. Anal. Model 2(1), 1–126 (2005). vol. 3, no.3, pp. 255–376 (2006)

Download references

Acknowledgments

The authors like to thank anonymous referees for their many insightful comments that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichun Li.

Additional information

Work partially supported by NSFC Project 11271310, NSFC Key Project 11031006, NSFC Project 11301446, IRT1179 of PCSIRT and MOST 2010DFR00700, Hunan Provincial Innovation Foundation for Postgraduate (CX2013B254), and a Grant from the Simons Foundation (#281296 to Jichun Li).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Li, J., Wu, C. et al. Superconvergence Analysis for Linear Tetrahedral Edge Elements. J Sci Comput 62, 122–145 (2015). https://doi.org/10.1007/s10915-014-9848-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9848-7

Keywords

Mathematics Subject Classification

Navigation