Abstract
In this paper we first discover and prove that on adaptive meshes the eigenvalues by the Crouzeix–Raviart element approximate the exact ones from below when the corresponding eigenfunctions are singular. In addition, we use conforming finite elements to do the interpolation postprocessing to get the upper bound of the eigenvalues. Using the upper and lower bounds of eigenvalues we design the control condition of adaptive algorithm, and some numerical experiments are carried out under the package of Chen to validate our theoretical results.





Similar content being viewed by others
References
Agouzal, A.: A posteriori error estimator for finite element discretizations of Quasi–Newtonian flows. Int. J. Numer. Anal. Model. 2(2), 221–239 (2005)
Ainsworth, M., Oden, J.T.: A posteriori error estimators for the Stokes and Oseen equations. SIAM J. Numer. Anal. 34, 228–245 (1997)
Ainsworth, M., Oden, J.D.: A Posteriori Error Estimates for the Finite Element Analysis. Wiley, New York (2000)
Armentano, M.G., Duran, R.G.: Asymptotic lower bounds for eigenvalues by nonconforming finit element methods. Electron. Trans. Numer. Anal. 17, 92–101 (2004)
Armentano, M.G., Padra, C.: A posteriori error estimates for the Steklov eigenvalue problem. Appl. Numer. Math. 58, 593–601 (2008)
Babuska, I., Rheinboldt, W.C.: A posteriori error estimates for the finite element method. Int J. Numer. Methods Eng. 12, 1597–1615 (1978)
Babuska, I., Kellog, R.B., Pitkaranta, J.: Direct and inverse error estimates for finite elements with mesh refinement. Numer. Math. 33, 447–471 (1979)
Babuska, I., Osborn, J.E.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods (Part 1), Handbook of Numerical Analysis, vol. 2, pp. 640–787. Elsevier Science Publishers, North-Holand (1991)
Becker, R., Mao, S., Shi, Z.: A Convergent nonconforming adaptive finite element method with quasi-optimal complexity. SIAM J. Numer. Anal. 47(6), 4639–4659 (2010)
Brenner, S.C., Sung, L.Y.: Linear finite element methods for planar linear elasticity. Math. Comp. 59, 321–338 (1992)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 2nd edn. Springer, New york (2002)
Carstensen, C., Hu, J., Orlando, A.: Framework for the a posteriori error analysis of nonconforming finite elements. SIAM J. Numer. Anal. 45(1), 68–82 (2007)
Carstensen, C., Gallistl, D.: Guaranteed lower eigenvalue bounds for the biharmonic equation. Numer. Math. 10.1007/s00211-013-0559-z
Chen, L.: iFEM: an innovative finite element methods package in MATLAB. www.math.uci.edu/~chenlong/Papers/iFEMpaper.pdf (2008)
Chen, Z., Nochetto, R.H.: Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84, 527–548 (2000)
Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary stokes equations. RAIRO Anal. Numer. 3, 33–75 (1973)
Dai, X., Xu, J., Zhou, A.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110, 313–355 (2008)
Dari, E., Durán, R., Padra, C., Vampa, V.: A posteriori error estimators for noconforming finite element methods, r.a.i.r.o., Model Math. Anal. Numer. 30, 385–400 (1996)
Durán, R.G., Gastaldi, L., Padra, C.: A posteriori error estimators for mixed approximations of eigenvalue problems. Math. Models Methods Appl. Sci. 9, 1165–1178 (1999)
Durán, R.G., Padra, C., Rodriguez, R.: A posteriori error estimators for the finite element approximations of eigenvalue problems. Math. Models Methods Appl. Sci. 13, 1219–1229 (2003)
Falk, R.S.: Nonconforming finite element methods for the equations of linear elasticity. Math. Comput. 57, 529–550 (1991)
Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, London (1985)
Hu, J., Huang, Y., Lin, Q.: The lower bounds for eigenvalues of elliptic operators-by Nonconforming finite element methods. arXiv:1112.1145v1 [math.NA] (2011)
Hu, J., Huang, Y., Shen, Q.: The lower/upper bounds property of approximate eigenvalues by nonconforming finite element methods for elliptic operators. J. Sci. Comput. 58(3), 574–591 (2013)
Li, Q., Lin, Q., Xie, H.: Nonconforming finite element approximations of the steklov eigenvalue problems and its lower bound approximations. Appl. Math. 58, 129–151 (2013)
Li, Y.: A posteriori error analysis of nonconforming methods for eigenvalue problem. J. Syst. Sci. Complex 22, 495–502 (2009)
Lin, Q., Xie, H., Luo, F., Li, Y., Yang, Y.: Stokes eigenvalue approximations from below with nonconforming mixed finite element methods (in chinese). Math. Pract. Theory 40, 157–168 (2010)
Lin, Q., Xie, H.: Recent results on lower bounds of eigenvalue problems by nonconforming finite element methods. Inverse Probl. Imaging 7(3), 795–811 (2013)
Luo, S., Lin, Q., Xie, H.: Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods. Sci. China Math. 55, 1069–1082 (2012)
Mekchay, K., Nochetto, R.H.: Convergence of adaptive finite element methods for general second order linear elliptic pdes. SIAM J. Numer. Anal. 43, 1803–1827 (2005)
Morin, P., Nochetto, R.H., Siebert, K.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002)
Russo, A.D., Alonso, A.E.: A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems. Comput. Math. Appl. 62(11), 4100–4117 (2011)
Verfürth, R.: A Review of A Posteriori Error Estimates and Adaptive Mesh-Refinement Techniques. Wiley, New York (1996)
Wang, L., Xu, X.: Foundation of Mathematics in Finite Element Methods (in Chinese). Science Press, Beijing (2004)
Widlund, O.: On best error bounds for approximation by piecewise polynomial functions. Numer. Math. 27, 327–338 (1977)
Wu, H., Zhang, Z.: Can we have superconvergent gradient recovery under adaptive meshes? SIAM J. Numer. Anal. 45, 1701–1722 (2007)
Yang, Y., Li, Q., Li, S.: Nonconforming finite element approximations of the Steklov eigenvalue problem. Appl. Numer. Math. 59, 2388–2401 (2009)
Yang, Y., Lin, F., Zhang, Z.: N-simplex Crouzeix–Raviart element for the second-order elliptic/eigenvalue problems. Int J. Numer. Anal. Model. 6(4), 615–626 (2009)
Yang, Y., Zhang, Z., Lin, F.: Eigenvalue approximation from below using non-conforming finite elements. Sci. China. Math. 53, 137–150 (2010)
Yang, Y., Lin, Q., Bi, H., Li, Q.: Lower eigenvalues approximation by Morley elements. Adv. Comput. Math. 36(3), 443–450 (2012)
Yang, Y.: Finite Element Methods for Eigenvalue Problems (in Chinese). Science Press, Beijing (2012)
Zhang, Z., Yang, Y., Chen, Z.: Eigenvalue approximation from below by Wilsons elements. Chin. J. Numer. Math. Appl. 29, 81–84 (2007)
Acknowledgments
The authors cordially thank the referees and the editor for their valuable comments and suggestions that led to the great improvement of this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the National Natural Science Foundation of China (Grant Nos. 11161012 , 11201093).
Rights and permissions
About this article
Cite this article
Yang, Y., Han, J., Bi, H. et al. The Lower/Upper Bound Property of the Crouzeix–Raviart Element Eigenvalues on Adaptive Meshes. J Sci Comput 62, 284–299 (2015). https://doi.org/10.1007/s10915-014-9855-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-014-9855-8