Abstract
Previously, based on the method of (radial powers) radial basis functions, we proposed a procedure for approximating derivative values from one-dimensional scattered noisy data. In this work, we show that the same approach also allows us to approximate the values of (Caputo) fractional derivatives (for orders between 0 and 1). With either an a priori or a posteriori strategy of choosing the regularization parameter, our convergence analysis shows that the approximated fractional derivative values converge at the same rate as in the case of integer order 1.







Similar content being viewed by others

Notes
More precisely, radial power RBF is \((-1)^\beta \Vert x\Vert ^{2\beta -1}\). As the interpolation matrix is not required in this work, we drop the term \((-1)^k\) for the sake of simplicity.
By the Morozov’s discrepancy principle, we select \(\sigma \) that satisfies
$$\begin{aligned} \frac{1}{n}\sum _{i=1}^{n}\big (y_{\beta ,\sigma }(x_{i})-{y}_{i}^\delta \big )^{2}=\delta ^{2}. \end{aligned}$$
References
Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975). Pure and Applied Mathematics, vol. 65
Anderssen, R.S., Bloomfield, P.: Numerical differentiation procedures for non-exact data. Numer. Math. 22(3), 157–182 (1974)
Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229(18), 6613–6622 (2010)
Durrans, S.R.: Distributions of fractional order statistics in hydrology. Water Resour. Res. 28(6), 1649–1655 (1992)
Faridani, A., Ritman, L.E., Smith, K.T.: Local tomography. SIAM J. Appl. Math. 52(2), 459484 (1992)
Fasshauer, G.E.: Meshfree Approximation Methods with Matlab. Interdisciplinary Mathematical Sciences 6. World Scientific, Hackensack (2007)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, Volume 204 of North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)
Kranzer, H.C.: An error formula for numerical differentiation. Numer. Math. 5(1), 439–442 (1963)
Li, X., Xu, C.: A space–time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)
Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8(5), 1016–1051 (2010)
Li, M., Xiong, X.T., Wang, Y.J.: A numerical evaluation and regularization of caputo fractional derivatives. J. Phys. Conf. Ser. 290(1), 012011 (2011)
Ling, L., Yamamoto, M.: Numerical simulations for space–time fractional diffusion equations. Int. J. Comput. Methods 10(2), 1341001 (2013)
Ling, L.: Finding numerical derivatives for unstructured and noisy data by multiscale kernels. SIAM J. Numer. Anal. 44(4), 1780–1800 (2006)
Mendes, R.V.: A fractional calculus interpretation of the fractional volatility model. Nonlinear Dyn. 55(4), 395–399 (2009)
Murio, D.A.: On the stable numerical evaluation of caputo fractional derivatives. Comput. Math. Appl. 51(910), 1539–1550 (2006)
Murio, D.A.: Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math. Appl. 53(10), 1492–1501 (2007)
Murio, D.A., Mejia, C.E.: Generalized time fractional IHCP with Caputo fractional derivatives. J. Phys. Conf. Ser. 135(1), 012074 (2008)
Novati, P.: Numerical approximation to the fractional derivative operator. Numer. Math. 1–28 (2013)
Piret, C., Hanert, E.: Fractional differential operator discretization using the radial basis functions method. J. Comput. Phys. To appear
Podlubny, I.: Fractional Differential Equations, Volume 198 of Mathematics in Science and Engineering. Academic Press, San Diego (1999)
Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. Math. Anal. Appl. 382(1), 426–447 (2011)
Sakamoto, K., Yamamoto, M.: Inverse source problem with a final overdetermination for a fractional diffusion equation. Math. Control Relat. Fields 1(4), 509–518 (2011)
Shirzadi, A., Ling, L., Abbasbandy, S.: Meshless simulations of the two-dimensional fractional-time convection-diffusion-reaction equations. Eng. Anal. Bound. Elem. 36(11), 1522–1527 (2012)
Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Winston & Sons, Washington (1977). Translated from the Russian, Preface by translation editor Fritz John, Scripta Series in Mathematics
Wan, X.Q., Wang, Y.B., Yamamoto, M.: Detection of irregular points by regularization in numerical differentiation and application to edge detection. Inverse Probl. 22(3), 1089–1103 (2006)
Wei, T., Li, M.: High order numerical derivatives for one-dimensional scattered noisy data. Appl. Math. Comput. 175(2), 1744–1759 (2006)
Zhao, J., Zhang, L., Zheng, W., Tian, H., Hao, D.-M., Wu, S.-H.: Normalized cut segmentation of thyroid tumor image based on fractional derivatives. In: He, J., Liu, X., Krupinski, E.A., Xu, G. (eds.) Health Information Science, Volume 7231 of Lecture Notes in Computer Science, pp. 100–109. Springer, Berlin (2012)
Zheng, G.H., Wei, T.: Spectral regularization method for a Cauchy problem of the time fractional advection-dispersion equation. J. Comput. Appl. Math. 233(10), 2631–2640 (2010)
Zhou, H., Tian, W.Y., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56(1), 45–66 (2013)
Acknowledgments
This project was partially supported by a CERG Grant of the Hong Kong Research Grant Council, a FRG Grant of the Hong Kong Baptist University, a grant from the National Natural Science Foundation of China (No. 11126126), the Natural Science Foundation of Shanxi (No. 2012021002-2), and the Shanxi Scholarship Council of China (Project No. 2011-025).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Li, M., Wang, Y. & Ling, L. Numerical Caputo Differentiation by Radial Basis Functions. J Sci Comput 62, 300–315 (2015). https://doi.org/10.1007/s10915-014-9857-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-014-9857-6