Skip to main content
Log in

Dispersion Relation Preserving Combined Compact Difference Schemes for Flow Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we have proposed two new combined compact difference (CCD) schemes for the solution of Navier–Stokes equations. These spatial discretization schemes have not only high spectral resolution for obtaining first and second derivative terms, but also have improved dispersion relation preserving properties when the fourth-order four-stage Runge–Kutta scheme is used for time integration. Out of the two proposed CCD schemes, the first scheme has upwind stencil, while the second scheme has a central stencil. Important numerical properties of these schemes have been analyzed and their effectiveness have been shown by solving the model wave equations, as well as Navier–Stokes equations. Results show that the upwind CCD scheme is suitable for high accuracy large eddy simulation of transitional and turbulent flowfields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Chiu, P.H., Sheu, T.W.H.: On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation. J. Comput. Phys. 228, 3640–3655 (2009)

    Article  MATH  Google Scholar 

  2. Sengupta, T.K., Dipankar, A., Sagaut, P.: Error dynamics: beyond von Neumann analysis. J. Comput. Phys. 226, 1211–1218 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Tam, C.K.W., Webb, J.C.: Dispersion-relation-preserving finite difference schemes for computational acoustics. J. Comput. Phys. 107, 262–281 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Sengupta, T.K., Ganeriwal, G., De, S.: Analysis of central and upwind compact schemes. J. Comput. Phys. 192, 677–694 (2003)

    Article  MATH  Google Scholar 

  6. Sengupta, T.K., Sircar, S.K., Dipankar, A.: High accuracy schemes for DNS and acoustics. J. Sci. Comput. 26, 151–193 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Weinan, E., Liu, J.G.: Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126, 122–138 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Meitz, H.L., Fasel, H.F.: A compact-difference scheme for the Navier–Stokes equations in vorticity-velocity formulation. J. Comput. Phys. 157, 371–403 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lee, C., Seo, Y.: A new compact spectral scheme for turbulence simulations. J. Comput. Phys. 183, 438–469 (2002)

    Article  MATH  Google Scholar 

  10. Nagarajan, S., Lele, S.K.: A robust high order compact method for large eddy simulation. J. Comput. Phys. 191, 392–419 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Park, N., Yoo, J.Y., Choi, H.: Discretization errors in large eddy simulation: on the suitability of centered and upwind biased compact difference schemes. J. Comput. Phys. 198, 580–616 (2004)

    Article  MATH  Google Scholar 

  12. Zhong, X.: High-order finite-difference schemes for numerical simulation of hypersonic boundary-layer transition. J. Comput. Phys. 144, 662–709 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sengupta, T.K., Rajpoot, M.K., Bhumkar, Y.G.: Space-time discretizing optimal DRP schemes for flow and wave propagation problems. Comput. Fluids 47, 144–154 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ekaterinaris, J.A.: Implicit, high-resolution compact schemes for gas dynamics and aeroacoustics. J. Comput. Phys. 156, 272–299 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Shang, J.S.: High-order compact-difference schemes for time-dependent maxwell equations. J. Comput. Phys. 153, 312–333 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zhou, Q., Yao, Z., He, F., Shen, M.Y.: A new family of high-order compact upwind difference schemes with good spectral resolution. J. Comput. Phys. 227, 1306–1339 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mahesh, K.: A family of high order finite difference schemes with good spectral resolution. J. Comput. Phys. 145, 332–358 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dipankar, A., Sengupta, T.K.: Symmetrized compact scheme for receptivity study of 2D transitional channel flow. J. Comput. Phys. 215, 245–273 (2006)

    Article  MATH  Google Scholar 

  19. Sengupta, T.K.: High Accuracy Computing Methods: Fluid Flows and Wave Phenomena. Cambridge University Press, Cambridge, MA (2013)

    Book  Google Scholar 

  20. Chu, P.C., Fan, C.: A three-point combined compact difference scheme. J. Comput. Phys. 140, 370–399 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sengupta, T.K., Lakshmanan, V., Vijay, V.V.S.N.: A new combined stable and dispersion relation preserving compact scheme for non-periodic problems. J. Comput. Phys. 228, 3048–3071 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sengupta, T.K., Vijay, V.V.S.N., Bhaumik, S.: Further improvement and analysis of CCD scheme: dissipation discretization and de-aliasing properties. J. Comput. Phys. 228, 6150–6168 (2009)

    Article  MATH  Google Scholar 

  23. Arakawa, A.: Computational design of long term numerical integration of the equations of fluid motion: two-dimensional incompressible flow. J. Comput. Phys. 1, 119–143 (1966)

    Article  MATH  Google Scholar 

  24. Kennedy, C.A., Gruber, A.: Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J. Comput. Phys. 227, 1676–1700 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kirby, R.M., Karniadakis, G.E.: De-aliasing on non-uniform grids: algorithms and application. J. Comput. Phys. 191, 249–264 (2003)

    Article  MATH  Google Scholar 

  26. Sengupta, T.K., Bhaumik, S., Bhumkar, Y.G.: Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage. Phys. Rev. E. 85, 026308 (2012)

    Article  Google Scholar 

  27. Sengupta, T.K., Nair, M.T.: Upwind schemes and large eddy simulation. Int. J. Numer. Methods Fluids 31, 879–889 (1999)

    Article  MATH  Google Scholar 

  28. Lesieur, M., Metais, O.: New trends in large eddy simulation of turbulence. Annu. Rev. Fluid Mech. 28, 45–82 (1996)

    Article  MathSciNet  Google Scholar 

  29. Sengupta, T.K., Dipankar, A.: A comparative study of time advancement methods for solving Navier–Stokes equations. J. Sci. Comput. 21, 225–250 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sengupta, T.K., Bhumkar, Y.G., Rajpoot, M., Suman, V.K., Saurabh, S.: Spurious waves in discrete computation of wave phenomena and flow problems. Appl. Math. Comput. 218, 9035–9065 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sheu, T.W.H., Chiu, P.H.: A divergence-free-condition compensated method for incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 196, 4479–4494 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Green, S.I.: Fluid Vortices: Fluid Mechanics and Its Applications. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  33. Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  34. Botella, O., Peyret, R.: Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids 27, 421–433 (1998)

    Article  MATH  Google Scholar 

  35. Bruneau, C.-H., Saad, M.: The 2D lid-driven cavity problem revisited. Comput. Fluids 35, 326–348 (2006)

    Article  MATH  Google Scholar 

  36. Peng, Y.F., Shiau, Y.H., Hwang, R.R.: Transition in a 2D lid driven cavity flow. Comput. Fluids 32, 337–352 (2003)

    Article  MATH  Google Scholar 

  37. Clercx, H.J.H., Maassen, S.R., van Heijst, G.J.F.: Decaying two-dimensional turbulence in square containers with no-slip or stress-free boundaries. Phys. Fluids 11, 611–626 (1999)

    Article  MATH  Google Scholar 

  38. Clercx, H.J.H., van Heijst, G.J.F.: Energy spectra for decaying 2D turbulence in a bounded domain. Phys. Rev. Lett. 85, 306–309 (2000)

    Article  Google Scholar 

  39. Sengupta, T.K., Singh, H., Bhaumik, S., Chowdhury, R.R.: Diffusion in inhomogeneous flows: unique equilibrium state in an internal flow. Comput. Fluids 88, 440–451 (2013)

    Article  MathSciNet  Google Scholar 

  40. Braccoa, A., McWilliams, J.C., Murante, G., Provenzale, A., Weiss, J.B.: Revisiting freely decaying two-dimensional turbulence at millennial resolution. Phys. Fluids 12, 2931–2941 (2000)

    Article  Google Scholar 

  41. Lo, D.C., Murugesan, K., Young, D.L.: Numerical solution of three-dimensional velocity–vorticity incompressible Navier–Stokes equations by finite difference method. Int. J. Numer. Methods Fluids 47, 1469–1487 (2005)

    Article  MATH  Google Scholar 

  42. Ding, H., Shu, C., Yeo, K.S., Xu, D.: Numerical computation of three-dimensional incompressible viscous flows in the primitive variable form by local multiquadric differential quadrature method. Comput. Methods Appl. Mech. Eng. 195, 516–533 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council of the Republic of China under Grant 101R891002. We are thankful to Prof. Tapan K. Sengupta for his valuable suggestions in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony W. H. Sheu.

Appendix

Appendix

In this section, we have provided the steps while developing an upwind combined compact difference scheme. The first and the second derivative terms (\(\frac{\partial u}{\partial x}\) and \(\frac{\partial ^2 u}{\partial x^2}\)) are approximated as

$$\begin{aligned} a_1\frac{\partial u}{\partial x}|_{i-1} \!+\!\frac{\partial u}{\partial x}|_{i}\!+\!a_3\frac{\partial u}{\partial x}|_{i+1}&= \frac{1}{h}( c_{1} u_{i-2} \!+\! c_{2}u_{i-1}\!+\! c_{3}u_{i} )\nonumber \\&-\,h\left( b_1\frac{\partial ^2 u}{\partial x^2}|_{i-1}\!+\!b_2\frac{\partial ^2 u}{\partial x^2}|_{i} \!+\!b_3\frac{\partial ^2 u}{\partial x^2}|_{i+1} \right) , \end{aligned}$$
(30)
$$\begin{aligned} -\frac{1}{8}\frac{\partial ^2 u}{\partial x^2}|_{i-1} \!+\!\frac{\partial ^2 u}{\partial x^2}|_{i} \!-\!\frac{1}{8}\frac{\partial ^2 u}{\partial x^2}|_{i+1}&= \frac{3}{h^2}( u_{i-1} \!-\!2u_{i} \!+\! u_{i+1} ) \!-\!\frac{9}{8h}\left( -\frac{\partial u}{\partial x}|_{i-1} \!+\! \frac{\partial u}{\partial x}|_{i+1}\right) .\nonumber \\ \end{aligned}$$
(31)

Here, we have used a central stencil to approximate the second-order derivative term. Taylor series expansion has been used to obtain the coefficients shown in (31), which results in a sixth-order accurate stencil based on the leading truncation error term. Coefficients in Eq. (30) are obtained by applying the Taylor series expansion for the terms \(u_{i-1},\,u_{i+1},\,\frac{\partial u}{\partial x}|_{i-1},\,\frac{\partial u}{\partial x}|_{i},\,\frac{\partial u}{\partial x}|_{i+1},\,\frac{\partial ^{2} u}{\partial x^{2}}|_{i-1},\,\frac{\partial ^{2} u}{\partial x^{2}}|_{i}\) and \(\frac{\partial ^{2} u}{\partial x^{2}}|_{i+1}\) with respect to \(u_i\).

In Eq. (30), there are in total eight unknown coefficients. Elimination of the leading truncation error terms gives the following set of seven algebraic equations.

$$\begin{aligned}&c_1 + c_2 + c_3 = 0, \end{aligned}$$
(32)
$$\begin{aligned}&-2c_1-c_2-a_1-a_3=1, \end{aligned}$$
(33)
$$\begin{aligned}&4c_1+c_2+2a_1-2a_3-2b_1-2b_2-2b_3 = 0, \end{aligned}$$
(34)
$$\begin{aligned}&8c_1+c_2+3a_1+3a_3-6b_1+6b_3 = 0, \end{aligned}$$
(35)
$$\begin{aligned}&16c_1+c_2+4a_1-4a_3-12b_1-12b_3 = 0, \end{aligned}$$
(36)
$$\begin{aligned}&32c_1+c_2+5a_1+5a_3-20b_1+20b_3 = 0, \end{aligned}$$
(37)
$$\begin{aligned}&64c_1+c_2+6a_1-6a_3-30b_1-30b_3 = 0. \end{aligned}$$
(38)

Derivation of one more algebraic equation is needed to determine all the eight coefficients in Eq. (30) uniquely for \(\frac{\partial u}{\partial x}|_{i}\). The first-order derivative term in Eq. (30) can be better approximated if the dispersive nature of the term \(\frac{\partial u}{\partial x}\) is well retained [1].

The expressions of the actual wavenumber for Eqs. (30) and (31) can be derived as

$$\begin{aligned} \mathbf {i}\alpha h~( a_1 e^{-\mathbf {i}\alpha h} + 1 + a_3 e^{\mathbf {i}\alpha h })&\simeq \left( c_1e^{-2\mathbf {i}\alpha h}+c_2e^{-\mathbf {i}\alpha h}+c_3\right) \nonumber \\&- \left( \mathbf {i}\alpha h\right) ^2\left( b_1e^{-\mathbf {i}\alpha h} + b_2 + b_3e^{\mathbf {i}\alpha h}\right) , \end{aligned}$$
(39)
$$\begin{aligned} (\mathbf {i}\alpha h)^2\left( -\frac{1}{8}e^{-\mathbf {i}\alpha h} +1-\frac{1}{8} e^{\mathbf {i}\alpha h}\right) \simeq ~ (3e^{-\mathbf {i}\alpha h}-6+3 e^{\mathbf {i}\alpha h}) \nonumber \\ -\,\mathbf {i}\alpha h~\left( -\frac{9}{8}e^{-\mathbf {i}\alpha h} +\frac{9}{8}e^{\mathbf {i}\alpha h}\right) . \end{aligned}$$
(40)

While approximating the first-order derivative term, dispersion error is minimized if the exact and the numerical wavenumbers are matched excellently over a complete wavenumber range. This amounts to equating the effective wavenumbers \(\alpha ^{'}\) and \(\alpha ^{''}\) to those shown in the right-hand sides of Eqs. (41) and (42) [1]. Thus, we obtained following two equations

$$\begin{aligned}&\mathbf {i}\alpha ^{'} h~\left( a_1 e^{-\mathbf {i}\alpha h} + 1 + a_3 e^{\mathbf {i}\alpha h }\right) =\left( c_1e^{-2\mathbf {i}\alpha h}+c_2e^{-\mathbf {i}\alpha h}+c_3\right) \nonumber \\&\quad -\,\left( \mathbf {i}\alpha ^{''} h\right) ^2\left( b_1e^{-\mathbf {i}\alpha h} + b_2 + b_3e^{\mathbf {i}\alpha h}\right) ,\end{aligned}$$
(41)
$$\begin{aligned}&(\mathbf {i}\alpha ^{''} h)^2\left( -\frac{1}{8}e^{-\mathbf {i}\alpha h} +1-\frac{1}{8} e^{\mathbf {i}\alpha h}\right) =(3e^{-\mathbf {i}\alpha h}-6+3 e^{\mathbf {i}\alpha h})\nonumber \\&\quad -\,\mathbf {i}\alpha ^{'} h~\left( -\frac{9}{8}e^{-\mathbf {i}\alpha h} +\frac{9}{8}e^{\mathbf {i}\alpha h}\right) . \end{aligned}$$
(42)

Equations (41) and (42) are solved to get the expression for \(\alpha ' h\) which has been used subsequently to minimize the dispersion error. This expression for \(\alpha ' h\), which is in general complex with the real and imaginary parts of the numerical modified wavenumber \(\alpha 'h\), provides information regarding the dispersion error (phase error) and the dissipation error (amplitude error), respectively. For getting better dispersive accuracy of \(\alpha '\), the value of \(\alpha h\) should be closer to \(\mathfrak {R}[\alpha ' h]\), where \(\mathfrak {R}[\alpha ' h]\) denotes the real part of \(\alpha ' h\). Thus the error function \(E(\alpha )\) as defined below should be very small. It has been evaluated over the integration range given below as

$$\begin{aligned} E(\alpha ) = \int \limits _{0}^{\frac{7\pi }{8}} \left[ \left( \alpha \,h-\mathfrak {R}[\alpha '\,h]\right) \right] ^2 d(\alpha h). \end{aligned}$$
(43)

To make the error function defined in \(0\le \alpha h\le \frac{7\pi }{8}\) to be positive and minimal, the extreme condition \( \frac{\partial E}{\partial c_{3}} = 0\) is enforced to minimize the numerical wavenumber error. This constraint equation has been used together with previously derived seven algebraic equations to obtain all the eight unknowns. The resulting eight introduced unknown coefficients can be uniquely determined as

$$\begin{aligned} a_1&= 0.888251792581,\,a_3 = 0.049229651564, b_1 = 0.150072398996,\\ b_2&= -0.250712794122,\, b_3 = -0.012416467490,\,c_1 = 0.016661718438,\\ c_2&= -1.970804881023 \,and\, c_3 = 1.954143162584. \end{aligned}$$

For \(u<0\), the proposed three-point stencil non-centered combined compact difference scheme can be similarly derived below for the approximation of the derivative term \(\frac{\partial u}{\partial x}\)

$$\begin{aligned}&0.049229651564\frac{\partial \upphi }{\partial x}|_{i-1} +\frac{\partial \upphi }{\partial x}|_{i} +0.888251792581\frac{\partial \upphi }{\partial x}|_{i+1}\nonumber \\&\quad +\,h \Big (0.012416467490\frac{\partial ^2 \upphi }{\partial x^2}|_{i-1} +0.250712794122\frac{\partial ^2 \upphi }{\partial x^2}|_{i} -0.150072398996\frac{\partial ^2 \upphi }{\partial x^2}|_{i+1}\Big ) \nonumber \\&\quad =\frac{1}{h}\left( -1.954143162584{\upphi }_{i} + 1.970804881023{\upphi }_{i+1} - 0.016661718438{\upphi }_{i+2}\right) . \end{aligned}$$
(44)

One should pay a careful attention to the following important points. Significant improvements in spectral resolution as shown in Fig. 1e and the DRP region shown in Fig. 5 are possible using a small stencil because we have derived the scheme for first and second derivatives in a coupled fashion. The expression for \(\alpha ^{'} h\) is derived by considering Eqs. (41) and (42) together. Figure 1f shows that efficiency in the evaluation of the second derivative is very close to the exact value. Thus, while designing CCD schemes, use of one optimization equation given by \( \frac{\partial E}{\partial c_{3}} = 0\) is justified.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C.H., Bhumkar, Y.G. & Sheu, T.W.H. Dispersion Relation Preserving Combined Compact Difference Schemes for Flow Problems. J Sci Comput 62, 482–516 (2015). https://doi.org/10.1007/s10915-014-9864-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9864-7

Keywords

Navigation