Skip to main content
Log in

Design of Loop’s Subdivision Surfaces by Fourth-Order Geometric PDEs with \(G^1\) Boundary Conditions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a method for constructing Loop’s subdivision surface patches with given \(G^1\) boundary conditions and a given topology of control polygon, using several fourth-order geometric partial differential equations. These equations are solved by a mixed finite element method in a function space defined by the extended Loop’s subdivision scheme. The method is flexible to the shape of the boundaries, and there is no limitation on the number of boundary curves and on the topology of the control polygon. Several properties for the basis functions of the finite element space are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bajaj, C., Xu, G., Warren, J.: Acoustics scattering on arbitrary manifold surfaces. In: Proceedings of Geometric Modeling and Processing, Theory and Application, Japan, pp. 73–82 (2002)

  2. Biermann, H., Levin, A., Zorin, D.: Piecewise-smooth subdivision surfaces with normal control. In: SIGGRAPH, pp. 113–120 (2000)

  3. Bryant, R.: A duality theorem for Willmore surfaces. J. Diff. Geom. 20, 23–53 (1984)

    MATH  Google Scholar 

  4. Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350–355 (1978)

    Article  Google Scholar 

  5. Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., Rusu, R.: A finite element method for surface restoration with boundary conditions. Comput. Aided Geom. Des. 21(5), 427–445 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Clarenz, U., Diewald, U., Rumpf, M.: Anisotropic geometric diffusion in surface processing. In Proceedings of Viz 2000, IEEE Visualization, Salt Lake City, Utah, pp. 397–405 (2000)

  7. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Book  MATH  Google Scholar 

  8. Doo, D., Sabin, M.: Behavious of recursive division surfaces near extraordinary points. Comput. Aided Des. 10(6), 356–360 (1978)

    Article  Google Scholar 

  9. Dyn, N., Levin, D., Gregory, J.A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graph. 9(2), 160–169 (1990)

    Article  MATH  Google Scholar 

  10. Epstein, C.L., Gage, M.: The curve shortening flow. In: Chorin, A., Majda, A. (eds.) Wave Motion: Theory, Modeling, and Computation, pp. 15–59. Springer, New York (1987)

    Chapter  Google Scholar 

  11. Escher, J., Simonett, G.: The volume preserving mean curvature flow near spheres. Proc. Am. Math. Soc. 126(9), 2789–2796 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jin, W., Wang, G.: Geometric modeling using minimal surfaces. Chin. J. Comput. 22(12), 1276–1280 (1999)

    MathSciNet  Google Scholar 

  13. Kobbelt, L., Hesse, T., Prautzsch, H., Schweizerhof, K.: Iterative mesh generation for FE-computation on free form surfaces. Eng. Comput. 14, 806–820 (1997)

    Article  MATH  Google Scholar 

  14. Kuwert, E., Schätzle, R.: The Willmore flow with small initial energy. J. Diff. Geom. 57(3), 409–441 (2001)

    MATH  Google Scholar 

  15. Kuwert, E., Schätzle, R.: Gradient flow for the Willmore functional. Commun. Anal. Geom. 10(5), 1228–1245 (2002)

    Google Scholar 

  16. Loop, C.: Smooth Subdivision Surfaces Based on Triangles. Master’s thesis. Technical report, Department of Mathematices, University of Utah (1978)

  17. Man, J., Wang, G.: Approximating to nonparameterzied minimal surface with B-spline surface. J. Softw. 14(4), 824–829 (2003)

    MATH  MathSciNet  Google Scholar 

  18. Man, J., Wang, G.: Minimal surface modeling using finite element method. Chin. J. Comput. 26(4), 507–510 (2003)

    MathSciNet  Google Scholar 

  19. Mullins, W.W.: Two-dimensional motion of idealised grain boundaries. J. Appl. Phys. 27, 900–904 (1956)

    Article  MathSciNet  Google Scholar 

  20. Mullins, W.W.: Theory of thermal grooving. J. Appl. Phys. 28, 333–339 (1957)

    Article  Google Scholar 

  21. Peters, J., Reif, U.: The simplest subdivision scheme for smoothing polyhedra. ACM Trans. Graph. 16(4), 420–431 (1997)

    Article  Google Scholar 

  22. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia, PA (2003)

    Book  MATH  Google Scholar 

  23. Sapiro, G.: Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, Cambridge, MA (2001)

    Book  MATH  Google Scholar 

  24. Sapiro, G., Tannenbaum, A.: Area and length preserving geometric invariant scale-spaces. IEEE Trans. Pattern Anal. Mach. Intell. 17, 67–72 (1995)

    Article  Google Scholar 

  25. Schneider, R., Kobbelt, L.: Generating fair meshes with \(G^{1}\) boundary conditions. In: Geometric Modeling and Processing, Hong Kong, China, pp. 251–261 (2000)

  26. Schneider, R., Kobbelt, L.: Geometric fairing of irregular meshes for free-form surface design. Comput. Aided Geom. Des. 18(4), 359–379 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schweitzer, J. E.: Analysis and Application of Subdivision Surfaces. PhD thesis, Department of Computer Science and Engineering, University of Washington, Seattle (1996)

  28. Simon, L.: Existence of surfaces minimizing the Willmore functional. Commun. Anal. Geom. 1(2), 281–326 (1993)

    MATH  Google Scholar 

  29. Stam, J.: Fast evaluation of loop triangular subdivision surfaces at arbitrary parameter values. In SIGGRAPH ’98 Proceedings, CD-ROM Supplement (1998)

  30. Xu, G.: Interpolation by loop’s subdivision functions. J. Comput. Math. 23(3), 247–260 (2005)

    MATH  MathSciNet  Google Scholar 

  31. Xu, G.: Geometric Partial Differential Equation Methods in Computational Geometry. Science Press, Beijing (2008)

    Google Scholar 

  32. Xu, G., Pan, Q., Bajaj, C.: Discrete surface modelling using partial differential equations. Comput. Aided Geom. Des. 23(2), 125–145 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Xu, G., Zhang, Q.: \(G^2\) surface modeling using minimal mean-curvature-variation flow. Comput. Aided Des. 39(5), 342–351 (2007)

    Article  MATH  Google Scholar 

  34. Zorin, D., Schröder, P., Sweldens, W.: Subdivision for meshes with arbitrary topology. In: SIGGRAPH ’96 Proceedings, pp. 71–78 (1996)

Download references

Acknowledgments

Guoliang Xu was supported in part by NSFC Funds for Creative Research Groups of China (Grant No. 11021101, 11321061). Qing Pan was supported by a National Natural Science Foundation of China (Grants No. 11171103) and Scientific Research Fund of Hunan Provincial Education Department (No. 12K029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Pan, Q. Design of Loop’s Subdivision Surfaces by Fourth-Order Geometric PDEs with \(G^1\) Boundary Conditions. J Sci Comput 62, 674–692 (2015). https://doi.org/10.1007/s10915-014-9872-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9872-7

Keywords

Navigation