Skip to main content
Log in

Redistancing Dynamics for Vector-Valued Multilabel Segmentation with Costly Fidelity: Grain Identification in Polycrystal Images

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A novel numerical method for multilabel segmentation of vector-valued images is presented. The algorithm seeks minimizers for a generalization of the piecewise-constant Mumford–Shah energy and is particularly appropriate for energies with a fitting (or fidelity) term that is computationally expensive to evaluate. The framework for the algorithm is the standard alternating-minimization scheme in which the update of the partition is alternated with the update of the vector-valued constants associated with each part of the segmentation. The update of the partition is based on the distance function-based diffusion-generated motion algorithms for mean curvature flow. The update of the vector-valued constants is based on an Augmented Lagrangian method. The scheme automatically chooses the appropriate number of segments in the partition. It is initialized with a partition of many more segments than are expected to be necessary. Adjacent segmentations of the partition are merged when energetically advantageous. The utility of the algorithm is demonstrated in the context of atomic-resolution polycrystalline image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000)

    Google Scholar 

  2. Bae, E., Yuan, J., Tai, X.C.: Global minimization for continuous multiphase partitioning problems using a dual approach. Int. J. Comput. Vis. 92(1), 112–129 (2010). doi:10.1007/s11263-010-0406-y

    Article  MathSciNet  Google Scholar 

  3. Berkels, B., Rätz, A., Rumpf, M., Voigt, A.: Extracting grain boundaries and macroscopic deformations from images on atomic scale. J. Sci. Comput. 35(1), 1–23 (2008). doi:10.1007/s10915-007-9157-5

    Article  MATH  MathSciNet  Google Scholar 

  4. Boerdgen, M., Berkels, B., Rumpf, M., Cremers, D.: Convex relaxation for grain segmentation at atomic scale. In: Fellner, D. (ed.) VMV 2010—Vision, Modeling and Visualization, pp. 179–186. Eurographics Association (2010)

  5. Bresson, X., Esedoḡlu, S., Vandergheynst, P., Thirau, J.-P., Osher, S.: Fast global minimization of the active contour/snake model. J. Math. Imaging Vis. 28, 151–167 (2007). doi:10.1007/s10851-007-0002-0

  6. Chan, T.F., Esedoglu, S., Nikolova, M.: Finding the global minimum for binary image restoration. In: Proceedings of the International Conference on Image Processing, vol. 1, pp. 121–124 (2005). doi:10.1109/ICIP.2005.1529702

  7. Chan, T.F., Sandberg, B.Y., Vese, L.A.: Active contours without edges for vector-valued images. J. Vis. Commun. Image Represent. 11(2), 130–141 (2000). doi:10.1006/jvci.1999.0442

    Article  Google Scholar 

  8. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001). doi:10.1109/83.902291

    Article  MATH  Google Scholar 

  9. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  10. Delong, A., Boykov, Y.: Globally optimal segmentation of multi-region objects. In: Proceedings of the International Conference on Computer Vision, pp. 285–292 (2009)

  11. El-Zehiry, N., Sahoo, P., Xu, S., Elmaghraby, A.: Graph cut optimization for the Mumford-Shah model. In: Proceedings of the International Conference on Visualization, Imaging and Image Processing (IASTED), pp. 182–187 (2007)

  12. El-Zehiry, N.Y., Elmaghraby, A.: A graph cut based active contour for multiphase image segmentation. In: Proceedings of the International Conference on Image Processing (ICIP), pp. 3188–3191 (2008). doi:10.1109/ICIP.2008.4712473

  13. El-Zehiry, N.Y., Grady, L.: Combinatorial optimization of the discretized multiphase Mumford–Shah functional. Int. J. Comput. Vis. 104, 270–285 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Elder, K.R., Grant, M.: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev. E 70, 051,605 (2004)

    Article  Google Scholar 

  15. Elsey, M., Esedoḡlu, S.: Fast and accurate redistancing by directional optimization. SIAM J. Sci. Comput. 36(1), A219–A231 (2014). doi:10.1137/120889447

    Article  MATH  MathSciNet  Google Scholar 

  16. Elsey, M., Esedoḡlu, S., Smereka, P.: Diffusion generated motion for grain growth in two and three dimensions. J. Comput. Phys. 228(21), 8015–8033 (2009). doi:10.1016/j.jcp.2009.07.020

    Article  MATH  MathSciNet  Google Scholar 

  17. Elsey, M., Esedoḡlu, S., Smereka, P.: Simulations of anisotropic grain growth: efficient algorithms and misorientation distributions. Acta Mater. 61, 2033–2043 (2013)

    Article  Google Scholar 

  18. Elsey, M., Wirth, B.: Fast automated detection of crystal distortion and crystal defects in polycrystal images. SIAM Multiscale Model. Simul. 12(1), 1–24 (2014)

    Article  MathSciNet  Google Scholar 

  19. Esedoḡlu, S., Otto, F.: Threshold dynamics for networks with arbitrary surface tensions. Commun. Pure Appl. Math. (2014). doi:10.1002/cpa.21527

  20. Esedoḡlu, S., Ruuth, S., Tsai, R.: Diffusion generated motion using signed distance functions. J. Comput. Phys. 229(4), 1017–1042 (2010)

    Article  MathSciNet  Google Scholar 

  21. Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009). doi:10.1137/080725891

    Article  MATH  MathSciNet  Google Scholar 

  22. Jeon, M., Alexander, M., Pedrycz, W., Pizzi, N.: Unsupervised hierarchical image segmentation with level set and additive operator splitting. Pattern Recognit. Lett. 26, 1461–1469 (2005). doi:10.1016/j.patrec.2004.11.023

    Article  Google Scholar 

  23. Merriman, B., Bence, J., Osher, S.: Diffusion generated motion by mean curvature. In: Taylor, J.E. (ed.) Computational Crystal Growers Workshop, pp. 73–83. American Mathematical Society, Providence (1992)

    Google Scholar 

  24. Merriman, B., Bence, J.K., Osher, S.: Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994)

    Article  MathSciNet  Google Scholar 

  25. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989). doi:10.1002/cpa.3160420503

    Article  MATH  MathSciNet  Google Scholar 

  26. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)

    MATH  Google Scholar 

  27. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Patala, S., Mason, J.K., Schuh, C.A.: Improved representations of misorientation information for grain boundary science and engineering. Prog. Mater. Sci. 57, 1383–1425 (2012)

    Article  Google Scholar 

  29. Potts, R.B.: Some generalized order-disorder transformations. Proc. Camb. Philos. Soc. 48, 106–109 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  30. Read, W.T., Shockley, W.: Dislocation models of crystal grain boundaries. Phys. Rev. 78(3), 275–289 (1950)

    Article  MATH  Google Scholar 

  31. Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22(2), 596–627 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ruuth, S.J.: A diffusion-generated approach to multiphase motion. J. Comput. Phys. 145, 166–192 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ruuth, S.J.: Efficient algorithms for diffusion-generated motion by mean curvature. J. Comput. Phys. 144, 603–625 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  34. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93, 1591–1595 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40(9), 1528–1538 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  36. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002). doi:10.1023/A:1020874308076

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Robert V. Kohn for many valuable discussions on the subject. M.E. gratefully acknowledges the support of National Science Foundation Grant OISE-0967140.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Elsey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsey, M., Wirth, B. Redistancing Dynamics for Vector-Valued Multilabel Segmentation with Costly Fidelity: Grain Identification in Polycrystal Images. J Sci Comput 63, 279–306 (2015). https://doi.org/10.1007/s10915-014-9892-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9892-3

Keywords

Mathematics Subject Classification

Navigation