Skip to main content
Log in

A New Approach for Numerically Solving Nonlinear Eigensolution Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

By considering a constraint on the energy profile, a new implicit approach is developed to solve nonlinear eigensolution problems. A corresponding minimax method is modified to numerically find eigensolutions in the order of their eigenvalues to a class of semilinear elliptic eigensolution problems from nonlinear optics and other nonlinear dispersive/diffusion systems. It turns out that the constraint is equivalent to a constraint on the wave intensity in L-(p+1) norm. The new approach enables people to establish some interesting new properties, such as wave intensity preserving/control, bifurcation identification, etc., and to explore their applications. Numerical results are presented to illustrate the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Agrawal, G.P.: Nonlinear Fiber Optics, 5th edn. Academic Press, Oxford (2013)

    Google Scholar 

  2. Bao, W., Cai, Y., Wang, H.: Efficient numerical methods for computing ground states and dynamics of dipolar Bose–Einstein condensates. J. Comput. Phys. 229, 7874–7892 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bao, W., Du, Q.: Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25, 1674–1697 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bodurov, T.: Derivation of the nonlinear Schrodinger equation from first principle. Annales de la Fondation Louis de Broglie 30, 1–10 (2005)

    MathSciNet  Google Scholar 

  5. Chan, T.F.C., Keller, H.B.: Arc-length continuation and multi-grid techniques for nonlinear elliptic eigenvalue problems. SIAM J. Sci. Stat. Comput. 3, 173–194 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chipot, M. (ed.): Handbook of Differential Equations: Stationary Partial Differential Equations, vol. 5. Elsevier, Oxford (2008)

    Google Scholar 

  7. Chow, S.N., Lauterbach, R.: A bifurcation theorem for critical points of variational problems. Nonlinear Anal. 12, 51–61 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Efendiev, Y., Galvis, J., Presho, M., Zhou, J.: A multiscale enrichment procedure for nonlinear monotone operators. M2AN 48, 475–491 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Glowinski, R., Tallec, P.L.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM Studies in Applied Mathematics, vol. 9. SIAM, Philadelphia (1989)

  10. Gui, C.: Multipeak solutions for a semilinear Neumann problem. Duke Math. J. 84, 739–769 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Rabinowitz, P. (ed.) Applications of Bifurcation Theory, pp. 359–384. Academic Press, New York (1977)

    Google Scholar 

  12. Li, Y., Zhou, J.: A minimax method for finding multiple critical points and its applications to semilinear elliptic PDEs. SIAM Sci. Comput. 23, 840–865 (2001)

    Article  MATH  Google Scholar 

  13. Lin, C. S., Ni, W. M., Takagi, I.: Large amplitude stationary solutions to a chemotaxis system. J. Differ. Equ. 72, 1–27 (1988)

  14. Ni, W.M., Takagi, I.: On the Neumann probem for some semilinear elliptic equations and systems of activator–inhibitor type. Trans. Am. Math. Soc. 297, 351–368 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rabinowitz, P.: Minimax method in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, No. 65. AMS, Providence (1986)

  16. Van Groesen, E.W.C., Nijmegen, T.: Continuation of solutions of constrained extremum problems and nonlinear eigenvalue problems. Math. Model. 1, 255–270 (1980)

    Article  MATH  Google Scholar 

  17. Wang, Z.Q., Zhou, J.: An efficient and stable method for computing multiple saddle points with symmetries. SIAM J. Numer. Anal. 43, 891–907 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang, Z.Q., Zhou, J.: A local Minimax–Newton method for finding critical points with symmetries. SIAM J. Numer. Anal. 42, 1745–1759 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Watanabe, T., Nishikawa, K., Kishimoto, Y., Hojo, H.: Numerical method for nonlinear eigenvalue problems. Phys. Scripta. T2(1), 142–146 (1982)

    Article  Google Scholar 

  20. Willem, M.: Minimax Theorems. Birkhauser, Boston (1996)

    Book  MATH  Google Scholar 

  21. Xie, Z., Yuan, Y., Zhou, J.: On finding multiple solutions to a singularly perturbed neumann problem. SIAM J. Sci. Comput. 34, 395–420 (2012)

    Article  MathSciNet  Google Scholar 

  22. Yao, X., Zhou, J.: A minimax method for finding multiple critical points in Banach spaces and its application to quasilinear elliptic PDE. SIAM J. Sci. Comput. 26, 1796–1809 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yao, X., Zhou, J.: Numerical methods for computing nonlinear eigenpairs. Part I. Iso-homogenous cases. SIAM J. Sci. Comput. 29, 1355–1374 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yao, X., Zhou, J.: Numerical methods for computing nonlinear eigenpairs. Part II. Non iso-homogenous cases. SIAM J. Sci. Comput. 30, 937–956 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zeidler, E.: Ljusternik–Schnirelman theory on general level sets. Math. Nachr. 129, 238–259 (1986)

    Article  MathSciNet  Google Scholar 

  26. Zhou, J.: A local min-orthogonal method for finding multiple saddle points. J. Math. Anal. Appl. 291, 66–81 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhou, J.: Instability analysis of saddle points by a local minimax method. Math. Comput. 74, 1391–1411 (2005)

    Article  MATH  Google Scholar 

  28. Zhou, J.: Global sequence convergence of a local minimax method for finding multiple solutions in Banach spaces. Num. Func. Anal. Optim. 32, 1365–1380 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Zhou.

Additional information

Supported in part by NSF DMS-0713872/0820327/1115384.

Appendices

Appendix A: Verification of Weaker PS\(_{\mathcal N}\) Condition

For \(\lambda (u)\) defined in Sect. 3, we verify its PS condition which is crucial for proving the existence of (infinitely) multiple eigenfunctions and also for the convergence of LMM.

Note that \(\lambda (u)\) may have a singular point. On the other hand, various PS conditions are proposed in the literature to prove the existence, but failed to handle such a singularity and are not for computational purpose. According to LMM, all computations are carried out only on the Nehari manifold \({\mathcal N}\), see (2.2), where it enjoys a nice property: \(\langle \lambda '(u),u\rangle =0\) for all \(u\in {\mathcal N}\) and \(\text{ dis }({\mathcal N},0)>t_0>0\) for some \(t_0>0\). So we can restrict our analysis only on \({\mathcal N}\) and utilize this property to simplify our analysis. Such an observation motivates us to introduce a new definition.

Definition 2

A \({\mathcal C}^1\)-functional \(J\) is said to satisfy PS\(_{\mathcal N}\) condition, if any sequence \(\{ u_k\}\subset {\mathcal N}= \{ u\in H : u\ne 0, \langle J'(u),u\rangle =0\}\) s.t. \(\{J(u_k)\}\) is bounded and \(J'(u_k)\rightarrow 0\) has a convergent subsequence.

It is clear that PS condition implies PS\(_{\mathcal N}\) condition.

Theorem 9

\(\lambda (u)\) defined with \(C(\lambda )=C\) or \(C(\lambda )=C\lambda \) in Sect. 3 satisfies PS\(_{\mathcal N}\) condition.

Proof

Let \(\{u_k\}\subset {\mathcal N}\) s.t. \(\{\lambda (u_k)\}\) is bounded and \(\lambda '(u_k)\rightarrow 0\). Since \(C(\lambda )=C\) or \(C\lambda \), \(\{C(\lambda (u_k))\}\) and \(\{C'(\lambda (u_k))\}\) are bounded. Note

$$\begin{aligned} H(u)=\frac{1}{2}\Vert \nabla u\Vert ^2_{L^2}-\frac{1}{p+1}\Vert u\Vert ^{p+1}_{L^{p+1}}, \quad I(u)=\frac{1}{2}\Vert u\Vert ^2_{L^2}. \end{aligned}$$
(3.14)

Thus \(\;\langle I'(u_k), u_k\rangle =2I(u_k)\) and \(\langle H'(u_k), u_k\rangle -2H(u_k)=\frac{1-p}{p+1}\Vert u_k\Vert ^{p+1}_{L^{p+1}}.\;\) Then \(u_k\in {\mathcal N}\) implies

$$\begin{aligned} 0=\langle \lambda '(u_k), u_k\rangle =[I(u_k)+C'(\lambda (u_k))]^{-1} [\langle H'(u_k),u_k\rangle -\lambda (u_k)\langle I'(u_k),u_k\rangle ] \end{aligned}$$

or

$$\begin{aligned} 0&= \langle H'(u_k),u_k\rangle -\lambda (u_k)\langle I'(u_k),u_k\rangle =\langle H'(u_k),u_k\rangle -2H(u_k)+2H(u_k)-2\lambda (u_k)I(u_k)\\&= \frac{1-p}{p+1}\Vert u_k\Vert ^{p+1}_{L^{p+1}}+2C(\lambda (u_k)). \end{aligned}$$

When \(\{C(\lambda (u_k))\}\) is bounded, so is \(\{\Vert u_k\Vert ^{p+1}_{L^{p+1}}\}\). By the Hölder inequality \(\{I(u_k)\}\) is bounded. Consequently \(\{I(u_k)+C'(\lambda (u_k))\}\) is bounded. Thus

$$\begin{aligned} \lambda '(u_k)\equiv \frac{H'(u_k)-\lambda (u_k) I'(u_k)}{I(u_k)+C'(\lambda (u_k))} \rightarrow 0\Rightarrow H'(u_k)-\lambda (u_k)I'(u_k)\rightarrow 0. \end{aligned}$$

From \(\,H(u_k)-\lambda (u_k)I(u_k)=C(\lambda (u_k))\) and (3.14), we see that \(\{\Vert \nabla u\Vert ^2_{L^2}\}\) is bounded or \(\{u_k\}\) is bounded in \(H=H^1\). Next we follow the approach in the proof of Lemma 1.20 in [20]. There is a subsequence, denote by \(\{u_k\}\) again, and \(u\in H\) s.t. \(u_k\rightharpoonup u\) (means weakly) in \(H\). By the Rellich theorem, \(u_k\rightarrow u\) in \(L^2\) and \(L^{p+1}\). Then

$$\begin{aligned} \Vert u_k-u\Vert ^2_H&= \int _\Omega [|\nabla u_k(x)-\nabla u(x)|^2+|u_k(x)-u(x)|^2]dx\\&= \langle H'(u_k)-\lambda (u_k)I'(u_k)-H'(u)+\lambda (u)I'(u), u_k-u\rangle \\&+\langle \lambda (u_k)I'(u_k)\!-\!\lambda (u)I'(u), u_k\!-\!u\rangle \!+\!\langle u_k^p\!-\!u^p, u_k-u\rangle +\Vert u_k-u\Vert ^2_{L^2}\!\rightarrow \! 0, \end{aligned}$$

where \(\Vert u_k-u\Vert ^2_{L^2}\rightarrow 0\) is clear; the first term

$$\begin{aligned} \langle H'(u_k)-\lambda (u_k)I'(u_k)-H'(u)+\lambda (u)I'(u), u_k-u\rangle \rightarrow 0, \end{aligned}$$

because \(H'(u_k)-\lambda (u_k)I'(u_k)\rightarrow 0\) in \(H\) and \(u_k\rightharpoonup u\); the second term

$$\begin{aligned} |\langle \lambda (u_k)I'(u_k)-\lambda (u)I'(u), u_k-u\rangle |&= |\int _\Omega [\lambda (u_k)u_k(x)- \lambda (u)u(x)][u_k(x)-u(x)]dx|\\&\le \Vert \lambda (u_k)u_k-\lambda (u)u\Vert _{L^2} \Vert u_k-u\Vert _{L^2}\rightarrow 0, \end{aligned}$$

by the Cauchy–Schwarz inequality, the boundedness of \(\lambda (u_k)\) and \(u_k\rightarrow u\) in \(L^2\); and finally

$$\begin{aligned} |\langle u_k^p-u^p, u_k-u\rangle |\le \Vert u_k-u\Vert ^{p+1}_{L^{p+1}}\rightarrow 0 \quad \text{ by }\quad u_k\rightarrow u\in L^{p+1}. \end{aligned}$$

\(\square \)

So Theorems 2 and 3 still hold when PS condition is replaced by PS\(_{\mathcal N}\) condition.

Appendix B: Proof of Theorem 8—Identification of Bifurcation

Proof

We have an expression for the linear operator

$$\begin{aligned} \lambda ''(u)&= \frac{1}{(I(u)+C'(\lambda (u))^2}[(H''(u)-\lambda '(u)I'(u) -\lambda (u)I''(u))(I(u)+C'(\lambda (u))\\&-(I'(u)+C''(\lambda (u))\lambda '(u))(H'(u)-\lambda (u)I'(u))]. \end{aligned}$$

At each \(u\) s.t. \(\lambda '(u)=0\) or \(H'(u)-\lambda (u)I'(u)=0\), we have

$$\begin{aligned} \lambda ''(u)=\frac{H''(u)-\lambda (u)I''(u)}{I(u)+C'(\lambda (u))}. \end{aligned}$$

Taking \(H(u)=\int _\Omega \left( \frac{1}{2}|\nabla u(x)|^2-\frac{\beta }{p+1} |u(x)|^{p+1}\right) dx, I(u)=\int _\Omega \frac{1}{2} u^2(x)dx\) into account, we have

$$\begin{aligned} H'(u)=\Delta u-\beta |u|^{p-1}u,\; I'(u)=u,\; H''(u)w=-\Delta w-p\beta |u|^{p-1}w,\;I''(u)w=w \end{aligned}$$

and then

$$\begin{aligned} \lambda '(u_C)=0\Leftrightarrow H'(u_c)-\lambda (u_C)I'(u_C)=0 \Leftrightarrow -\beta u_C^{p}-\lambda (u_C)u_C=0\Leftrightarrow \lambda (u_C) =-\beta u_C^{p-1}. \end{aligned}$$
(3.15)

Note \(u_C>0\) can be solved from

$$\begin{aligned} H(u_C)-\lambda (u_C)I(u_C)=C(\lambda (u_C))\;\text{ or }\;-\frac{\beta }{p+1} u_C^{p+1}|\Omega |+ u_C^{p-1}\frac{\beta }{2} u_C^2|\Omega |=C(-\beta u_C^{p-1}). \end{aligned}$$
(3.16)

Let \(\eta \) be an eigenvalue of the linear operator \(\lambda ''(u_C)\) and \(w\) be an associated eigenfunction, i.e.,

$$\begin{aligned} \lambda ''(u_C)w=\frac{-\Delta w-p\beta u_C^{p-1}w+ \beta u_C^{p-1}w}{\frac{1}{2} u_C^2|\Omega |+C'(-u_C^{p-1})}=\eta w. \end{aligned}$$

It leads to

$$\begin{aligned} -\Delta w=\left[ (p-1)\beta u_C^{p-1}+\eta \left( \frac{1}{2} u_C^2|\Omega |+C'(-u_C^{p-1})\right) \right] w \mathop {=\!=}\limits ^{\text{ denote }}\mu w. \end{aligned}$$

Then \(\mu =(p-1)\beta u_C^{p-1}+\eta \left( \frac{1}{2} u_C^2|\Omega |+C'(-u_C^{p-1})\right) \) is an eigenvalue of \(-\Delta \) and \(w\) is its associated eigenfunction. So \(\lambda ''(u_C)\) and \(-\Delta \) share exactly the same eigenfunctions. We have

$$\begin{aligned} \eta =\frac{\mu -(p-1)\beta u_C^{p-1}}{\frac{1}{2} u_C^2|\Omega |+C'(-u_C^{p-1})}. \end{aligned}$$

It indicates that \(\eta \) and \(\mu \) have the same multiplicity. Let \(\eta _1<\eta _2\le \eta _3\cdots \) be all the eigenvalues of \(\lambda ''(u_C)\). We obtain that for \(k=1,2,\cdots \), (a) if

$$\begin{aligned} \mu _k<(p-1)\beta u_C^{p-1}<\mu _{k+1}, \end{aligned}$$
(3.17)

then \(\eta _i<0, i=1,2,\ldots ,k\) and \(\eta _j>0, j=k+1,k+2,\ldots \), thus \(u_C\) is nondegenerate with MI\((u_c)=k\); and (b) if

$$\begin{aligned} \mu _k<(p-1)\beta u_C^{p-1}=\mu _{k+1}=\cdots =\mu _{k+r_k}<\mu _{k+1+r_k}, \end{aligned}$$
(3.18)

then \(\eta _i<0, i=1,2,\ldots ,k, \eta _i=0, i=k+1,\ldots ,k+r_k, \eta _i>0, i=k+1+r_k, k+2+r_k,\ldots \), thus \(u_c\) is degenerate with MI\((u_C)=k\), nullity\((u_C)=r_k\ge 1\) and \(u_C\) bifurcates to new solution(s) [7]. Note that by the maximum principle, an one-sign solution either whose value and derivative are equal to zero at an interior point of \(\Omega \) or whose value and normal derivative are equal to zero at a boundary point of \(\Omega \) must be identically equal to zero. Since a sign-changing solution has nodal line(s) (where values are equal to zero) inside \(\Omega \), when a sequence of sign-changing solutions approach to an one-sign solution \(u^*\), there are two possibilities: (1) some nodal lines stay inside \(\Omega \) thus \(u^*\) attains its zero value and zero derivative at an interior point of \(\Omega \) or (2) some nodal lines approach to the boundary \(\partial \Omega \) thus \(u^*\) attains its zero value and zero normal derivative (as a solution) at a boundary point of \(\Omega \). In either case, \(u^*\) has to be identically equal to zero. When

$$\begin{aligned} \mu _1=0<(p-1)\beta u_C^{p-1}<\mu _2 \end{aligned}$$

\(u_C\) is nondegenerate, so no bifurcation takes place. On the other hand, since \(u_C>0=\mu _1\) and at each bifurcation point \((p-1)\beta u_C^{p-1}=\mu _{k+1}\ge \mu _2>0, u_C>0\) must satisfy

$$\begin{aligned} u_C\ge \Big [\frac{\mu _2}{(p-1)\beta }\Big ]^{\frac{1}{p-1}}>0 \end{aligned}$$

and can bifurcate only to positive non trivial solutions.

When \(C(\lambda )=C\), the equation in (3.16) becomes

$$\begin{aligned} -\frac{\beta }{p+1} u_C^{p+1}|\Omega |+ u_C^{p-1}\frac{\beta }{2} u_C^2|\Omega |=C, \end{aligned}$$

which leads to

$$\begin{aligned} u_C=\Big [\frac{2C(p+1)}{|\Omega |\beta (p-1)}\Big ]^{\frac{1}{p+1}}\quad \text{ and }\quad \lambda (u_C)= -\beta \Big [\frac{2C(p+1)}{|\Omega |\beta (p-1)}\Big ]^{\frac{p-1}{p+1}} \end{aligned}$$
(3.19)

from the last equation in (3.15). It is clear that \(u_C\) is monotonically increasing in \(C\). When \(C\) increases so that the term \((p-1)u_C^{p-1}\) increases and crosses each \(\mu _k\), the positive constant solution \(u_C\) bifurcates to new positive solution(s).\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhou, J. A New Approach for Numerically Solving Nonlinear Eigensolution Problems. J Sci Comput 64, 109–129 (2015). https://doi.org/10.1007/s10915-014-9925-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9925-y

Keywords

Mathematics Subject Classification

Navigation