Abstract
In this article, we propose and analyze two kinds of adaptive bilinear element finite volume methods for second-order elliptic problems on nonmatching grids. One of them chooses the piecewise bilinear finite element space as the trial function space, which is continuous on the matching part of a grid and is discontinuous on the nonmatching part of it. The other directly uses discontinuous piecewise bilinear element space for the trial function space. A priori estimations ensure the convergence and a posteriori estimations pave the way for adaptive methods. Several numerical experiments are presented to conform our theoretical results.










Similar content being viewed by others
References
Babušhka, I., Rheinboldt, W.C.: A posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615 (1978)
Bank, R.E., Weiser, A.: Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44(170), 283–301 (1985)
Ainsworth, M., Oden, J.T.: A unified approach to a posteriori error estimation using element residual methods. Numer. Math. 65, 23–50 (1993)
Ainsworth, M., Craig, A.W.: A posteriori error estimators in the finite element method. Numer. Math. 60, 429–463 (1991)
Chen, H., Ewing, R.E., Qin, G.: Adaptive finite element approximations on nonmatching grids for second-order elliptic problems. Numer. Methods Partial Differ. Equ. 26, 785–806 (2010)
Bergam, A., Mghazli, Z., Verfurth, R.: A posteriori estimators for the finite volume discretization of an elliptic problem. Numer. Math. 95, 599–624 (2003)
Kroner, D., Ohlberger, M.: Aposteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions. Math. Comput. 69, 25–39 (1999)
Ohlberger, M.: A posteriori error estimates for vertex centered finite volume approximations of convection–diffusion–reaction equations. M2AN Math. Model. Numer. Anal. 35, 355–387 (2001)
Chatzipantelidis, P., Makridakis, C., Plexousakis, M.: A-posteriori error estimates for a finite volume method for the Stokes problem in two dimensions. Appl. Numer. Math. 46, 45–58 (2003)
Ye, X.: A posterior error estimate for finite volume methods of the second order elliptic problem. Numer. Methods Partial Differ. Equ. 27, 1165–1178 (2011)
Chen, Z., Wu, J.F., Xu, Y.S.: Higher-order finite volume methods for elliptic boundary value problems. Adv. Comput. Math. 37(2), 191–253 (2012)
Cai, Z.Q., Mandel, J., McCormick, S.: The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28, 392–402 (1991)
Chou, S.H., Kwak, D.Y., Li, Q.: \(L^p\) error estimates and superconvergence for covolume or finite volume element methods. Numer. Methods Partial Differ. Equ. 19(4), 463–486 (2003)
Wu, H., Li, R.: Eerror estimate for finite volume element methods for general second order elliptic problem. Numer. Methods Partial Differ. Equ. 19, 693–708 (2003)
Lv, J.L., Li, Y.H.: Optimal biquadratic finite volume element methods on quadrilateral meshes. SIAM J. Numer. Anal. 50(5), 2379–2399 (2012)
Ye, X.: A new discontinuous finite volume method for elliptic problems. SIAM J. Numer. Anal. 42(3), 1062–1072 (2004)
Ye, X.: A discontinuous finite volume method for the Stokes problems. SIAM J. Numer. Anal. 44, 183–198 (2006)
Ye, X.: Analysis and convergence of finite volume method using discontinuous bilinear functions. Numer. Methods Partial Differ. Equ. 24, 335–348 (2008)
Liu, J., Mu, L., Ye, X., Jari, R.: Convergence of the discontinuous finite volume method for elliptic problems with minimal regularity. J. Comput. Appl. Math. 236, 4537–4546 (2012)
Chou, S.H., Kwak, D.Y.: Analysis and convergence of a MAC scheme for the generalized Stokes problem. Numer. Methods Partial Differ. Equ. 13, 147–162 (1997)
Sun, S., Wheeler, M.: Energy norm a posteriori error estimation for discontinuous Galerkin approximations of reactive transport problems. ICES Report, 03-39(2003)
Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques. Wiley and Teubner, New York (1996)
Carstensen, C., Lazarov, R., Tomov, S.: Explicit and averaging a posteriori error estimates for adaptive finite volume methods. SIAM J. Numer Anal. 42, 2496–2521 (2005)
Yang, M.: A posteriori error analysis of nonconforming finite volume elements for general second-order elliptic PDEs. Numer. Methods Partial Differ. Equ. 27, 277–291 (2011)
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the ‘985’ program of Jilin University and the National Natural Science Foundation of China (Nos. 11371170 and 11171036).
Rights and permissions
About this article
Cite this article
Chen, Y., Li, Y., Sheng, Z. et al. Adaptive Bilinear Element Finite Volume Methods for Second-Order Elliptic Problems on Nonmatching Grids. J Sci Comput 64, 130–150 (2015). https://doi.org/10.1007/s10915-014-9927-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-014-9927-9
Keywords
- Finite volume method
- Discontinuous Galerkin method
- A posteriori estimates
- Hanging nodes
- Elliptic problems