Skip to main content
Log in

A Fast Explicit Operator Splitting Method for Modified Buckley–Leverett Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a fast explicit operator splitting method to solve the modified Buckley–Leverett equations which include a third-order mixed derivatives term resulting from the dynamic effects in the pressure difference between the two phases. The method splits the original equation into two equations, one with a nonlinear convective term and the other one with high-order linear terms so that appropriate numerical methods can be applied to each of the split equations: the high-order linear equation is numerically solved using a pseudo-spectral method, while the nonlinear convective equation is integrated using the Godunov-type central-upwind scheme. The spatial order of the central-upwind scheme depends on the order of the piecewise polynomial reconstruction: we test both the second-order minmod-based reconstruction and fifth-order WENO5 one to demonstrate that using higher-order spatial reconstruction leads to more accurate approximation of solutions. A variety of numerical examples in both one and two space dimensions show that the solutions may have many different saturation profiles depending on the initial conditions, diffusion parameter, and the third-order mixed derivatives parameter. The results are consistent with the study of traveling wave solutions and their bifurcation diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Barenblatt, G.I., Garcia-Azorero, J., De Pablo, A., Vazquez, J.L.: Mathematical model of the non-equilibrium water-oil displacement in porous strata. Appl. Anal. 65, 19–45 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buckley, S.E., Leverett, M.C.: Mechanism of fluid displacement in sands. Pet. Trans. AIME 146, 107–116 (1942)

    Article  Google Scholar 

  3. Chertock, A., Kashdan, E., Kurganov, A.: Propagation of Diffusing Pollutant by a Hybrid Eulerian–Lagrangian method, in Hyperbolic Problems: Theory, Numerics, Applications. Springer, Berlin (2008)

    Google Scholar 

  4. Chertock, A., Kurganov, A.: On splitting-based numerical methods for convection-diffusion equations. In: Numerical Methods for Balance Laws, vol. 24 of Quad. Mat., pp. 303–343. Department of Mathematics, Seconda University, Napoli, Caserta (2009)

  5. Chertock, A., Kurganov, A., Petrova, G.: Fast explicit operator splitting method. Application to the polymer system. In: Finite Volumes for Complex Applications IV, pp. 63–72. ISTE, London (2005)

  6. Chertock, A., Kurganov, A., Petrova, G.: Fast explicit operator splitting method for convection-diffusion equations. Int. J. Numer. Methods Fluids 59, 309–332 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cuesta, C., van Duijn, C.J., Hulshof, J.: Infiltration in porous media with dynamic capillary pressure: travelling waves. Eur. J. Appl. Math. 11, 381–397 (2000)

    Article  MATH  Google Scholar 

  8. DiCarlo, D.A.: Experimental measurements of saturation overshoot on infiltration. Water Resour. Res. 40, W04215.1–W04215.9 (2004)

    Article  Google Scholar 

  9. Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific, Hackensack (2011)

    Book  MATH  Google Scholar 

  10. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hassanizadeh, S., Gray, W.G.: Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29, 3389–3405 (1993)

    Article  Google Scholar 

  12. Hassanizadeh, S.M., Gray, W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13, 169–186 (1990)

    Article  Google Scholar 

  13. Johnson, I.W., Wathen, A.J., Baines, M.J.: Moving finite element methods for evolutionary problems. II. Applications. J. Comput. Phys. 79, 270–297 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kurganov, A., Lin, C.-T.: On the reduction of numerical dissipation in central-upwind schemes. Commun. Comput. Phys. 2, 141–163 (2007)

    MathSciNet  MATH  Google Scholar 

  15. Kurganov, A., Noelle, S., Petrova, G.: Semidiscrete central-upwind schemes for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci. Comput. 23, 707–740 (2001). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kurganov, A., Petrova, G., Popov, B.: Adaptive semi-discrete central-upwind schemes for nonconvex hyperbolic conservation laws. SIAM J. Sci. Comput. 29, 2381–2401 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lie, K.-A., Noelle, S.: On the artificial compression method for second-order nonoscillatory central difference schemes for systems of conservation laws. SIAM J. Sci. Comput. 24, 1157–1174 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nessyahu, H., Tadmor, E.: Nonoscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87, 408–463 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (Cetraro, 1997) vol. 1697 of Lecture Notes in Mathematics, pp. 325–432. Springer, Berlin (1998)

  20. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Spayd, K., Shearer, M.: The Buckley-Leverett equation with dynamic capillary pressure. SIAM J. Appl. Math. 71, 1088–1108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21, 995–1011 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. van Duijn, C.J., Mikelic, A., Pop, I.S.: Buckley-Leverett, Effective, equations by homogenization. In: Progress in Industrial Mathematics at ECMI 2000 (Palermo), vol. 1 of Math. Ind., pp. 2–51. Springer, Berlin (2002)

  24. van Duijn, C.J., Mikelić, A., Pop, I.S.: Effective equations for two-phase flow with trapping on the micro scale. SIAM J. Appl. Math. 62, 1531–1568 (2002). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  25. van Duijn, C.J., Peletier, L.A., Pop, I.S.: A new class of entropy solutions of the Buckley-Leverett equation. SIAM J. Math. Anal. 39, 507–536 (2007). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  26. van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)

    Article  Google Scholar 

  27. Wang, Y.: Central schemes for the modified Buckley-Leverett equation. PhD thesis, The Ohio State University (2010)

  28. Wang, Y., Kao, C.-Y.: Central schemes for the modified Buckley-Leverett equation. J. Comput. Sci. 4, 12–23 (2013)

    Article  Google Scholar 

  29. Wathen, A.J.: Moving finite elements and oil reseruoir modelàng. PhD thesis, University of Reading, UK (1984)

Download references

Acknowledgments

The work of C.-Y. Kao was supported in part by the NSF Grant DMS-1318364. The work of A. Kurganov and Z. Qu was supported in part by the NSF Grant DMS-1115718.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kurganov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kao, CY., Kurganov, A., Qu, Z. et al. A Fast Explicit Operator Splitting Method for Modified Buckley–Leverett Equations. J Sci Comput 64, 837–857 (2015). https://doi.org/10.1007/s10915-014-9950-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9950-x

Keywords

Mathematics Subject Classification

Navigation