Abstract
In this paper, we apply the finite element and backward Euler scheme for the space and time approximation of a constrained optimal control problem governed by a parabolic integro-differential equation on multi-meshes. We firstly establish the weak formulations for the control problem and then derive equivalent a posteriori error estimators with lower and upper bounds for both the state and the control approximation. These indicators are then used in our adaptive multi-meshes finite element schemes. Finally some numerical tests are presented to verify the effectiveness of the indicators.



Similar content being viewed by others
References
Ainsworth, M., Oden, J.T.: A Posteriori Error Estimators in Finite Element Analysis. Comput. Methods Appl. Mech. Engrg. 142, 1–88 (1997)
Becker, R., Kapp, H., Rannacher, R.: Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic concept. SIAM J. Control and Optimization 39, 113–132 (2000)
Becker, R., Rannacher, R.: An Optimal Control Approach to a Posteriori Error EstimationInA. Iserles, editor, Cambridge University Press, Acta Numerica, 1–102 (2001)
Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problem. Springer-Verlag, New York (2000)
Chen, Y.P.: Zuliang Lu. Error Estimates of Fully Discrete Mixed Finite Element Methods for Semilinear Quadratic Parabolic Optimal Control Problem, Computer Methods in Applied Mechanics and Engineering 199, 1415–1423 (2010)
Clarke, F.H.: Optimization and Nonsmooth Analysis. John Wiley Sons, Amsterdam (1983)
Friedman, A., Shinbrot, M.: Volterra Integral Equations in Banach Space. Trans. Amer. Math. Soc. 126, 131–179 (1967)
Grimmer, R.C., Pritchard, A.J.: Analytic Resolvent Operators for Integral Equations in Banach Space. J. Differential Equations 50, 234–259 (1983)
Heard, M.L.: An Abstract Parabolic Volterra Integro-differential Equation. SIAM J. Math. Anal. 13, 81–105 (1982)
Hermann, B., Yan, N.N.: Finite element methods for optimal control problems governed by integral equations and integro-differrential equations. Numerische Mathematik 101, 1–27 (2005)
Kufner, A., John, O., Fucik, S.: Function Spaces. Nordhoff, Leiden, The Netherlands (1977)
Li, R.: On Multi-Mesh h-Adaptive Algorithm. J. S. C. 24, 321–341 (2005)
Li, R., Liu, W.B., Ma, H.P., Tang, T.: Adaptive Finite Element Approximation of Elliptic Optimal Control. SIAM J. Control. Optim. 41, 1321–1349 (2002)
Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971)
Lions, J.L., Magenes, E.: Non Homogeneous Boundary Value Problems and Applications. Grandlehre B. 181, Springer-Verlag
Liu, W.B., Tiba, D.: Error estimates for the finite element approximation of a class of nonlinear optimal control problems. J. Numer. Func. Optim 22, 953–972 (2001)
Liu, W.B., Yan, N.N.: A Posteriori Error Analysis for Convex Distributed Optimal Control Problems. Adv. Comp. Math. 15, 285–309 (2001)
Liu, W.B., Yan, N.N.: A posteriori error estimates for optimal boundary control. SIAMJ.Numer. Anal. 39, 73–99 (2001)
Liu, W.B., Yan, N.N.: A Posteriori Error Estimates for Optimal Control Problems Governed by Parabolic Equations. Numerische Mathematic 93(3), 497–521 (2003)
Liu, W.B., Yan, N.N.: Adaptive Finite Elements Methods for Optimal Control Problem Governed by PDEs. Sciences Press, Beijing (2008)
Lorenzi, A., Sinestrari, E.: An Inverse Problem in the Theory of Materials with Memory. Nonlinear Anal. Theory Methods Appl. 12, 1317–1335 (1988)
Lunardi, A., Sinestrari, E.: \(C^\infty \)-Regularity of Non-autonomous Linear Integro-differential Equations of Parabolic Type. J. Differential Equations 63, 88–116 (1986)
Meidner, Dominik, Vexler, Boris: A Priori Error Estimates for Space-Time Finite Element Discretization for Parabolic Optimal Control Problems Part I: Problems without Control Constraints. SIAM J. Control. Optim. 47(3), 1150–1177 (2008)
Neittaanmaki, P., Tiba, D., Dekker, M.: Optimal Control of Nonlinear Parabolic Systems, Theory, algorithms and applications, New York (1994)
Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer-Verlag, Berlin (1984)
Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical Problems in Viscoelasticity, Pit- man Monographs and Surveys in Pure and Applied Mathematics, Longman Scientific and Technical, Harlow, Essex, Vol. 35 (1987)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)
Scott, L.R., Zhang, S.Y.: Finite Element Interpolation of Nonsmooth Functions Satisfying Boundary Conditions. Mathematics of Computation 54, 483–493 (1990)
Shen, Wanfang, Ge, Liang, Yang, Danping, Liu, Wenbin: A Priori Error Estimates of Finite Element Methods for Linear Parabolic Integro-differential Optimal Control Problems. Advances in Applied Mathematics and Mechanics 6(5), 552–569 (2013)
Shen, Wanfang, Ge, Liang, Yang, Danping: Finite Element Methods for Optimal Control Problems Governed By Linear Quasi-Parabolic Integro-Differential Equations. International Journal of Numerical Analysis and Modeling 10(3), 536–550 (2013)
Tiba, D.: Optimal Control of Nonsmooth Distributed Parameter Systems. Lecture Notes Math, Springer-Verlag, Berlin (1990)
Tiba, D., Troltzsch, F.: Error Estimates for the Discretization of State Constrained Convex Control Problems. Numerical Functional Analysis and Optimisation 17 (1996)
Verfurth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement. Wiley-Teubner, London, UK (1996)
Verfurth, R.: A Posteriori Error Estimates for Finite Element Discretizations of the Heat Equation. Calcolo 40, 195–212 (2003)
Author information
Authors and Affiliations
Corresponding author
Additional information
The research was partially supported by National Natural Foundation of China, Grants: 11326226, 11071080 and 11171113.
Rights and permissions
About this article
Cite this article
Shen, W., Ge, L., Yang, D. et al. Sharp A Posteriori Error Estimates for Optimal Control Governed by Parabolic Integro-Differential Equations. J Sci Comput 65, 1–33 (2015). https://doi.org/10.1007/s10915-014-9957-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-014-9957-3