Abstract
In this paper, a new robust residual type a posteriori error estimator is developed and analyzed for convection–diffusion equations. A novel dual norm is introduced, under which the error estimator is proved to be robust with respect to the singularly perturbed parameter \(\varepsilon \). Both theoretical and numerical results showed that the estimator performs better than the existing ones in literature.












Similar content being viewed by others
References
Adams, R.A.: Sobolev Space. Academic Press, New York (1975)
Alaoui, L.El., Ern, A., Burman, E.: A priori and a posteriori analysis of non-conforming finite elements with face penalty for advection–diffusion equations. IMA J. Numer. Anal 27, 151–171 (2007)
Angermann, L.: Balanced a posteriori error estimates for finite volume type discretizations of convection-dominated elliptic problems. Computing 55(4), 305–323 (1995)
Anisworth, M., Allends, A., Barrenechea, G.R., Rankin, R.: Fully computable a posteriori error bounds for stabilized FEM approximations of convection–reaction–diffusion problems in three dimensions. Int. J. Numer. Methods Fluids 73(9), 765–790 (2013)
Araya, R., Behrens, E., Rodriguez, R.: Error estimators for advection–diffusion–reaction problems based on the solution of local problems. J. Comput. Appl. Math. 206, 440–453 (2007)
Araya, R., Poza, A.H., Stephan, E.P.: A hierarchical a posteriori error estimate for an advection–diffusion–reaction problem. Math. Models Methods Appl. Sci. 15, 1119–1139 (2005)
Bacuta, C., Bramble, J.H., Xu, J.: Regularity estimates for elliptic boundary value problems in Besov spaces. Math. Comput. 72(244), 1577–1595 (2002)
Bacuta, C., Bramble, J.H., Xu, J.: Regularity estimates for elliptic boundary value problems with smooth data on polygonal domains. Numer. Math. 11(2), 75–94 (2003)
Bergh, J., Löfstr, J.: Interpolation Spaces. Springer, Berlin (1976)
Berron, S.: Robustness in a posteriori error analysis for FEM flow models. Numer. Math. 91(3), 389–422 (2002)
Berrone, S., Canuto, C.: Multilevel a posteriori analysis for reaction–convection–diffusion problems. Appl. Numer. Math. 50, 371–394 (2004)
Carstensen, C.: An a posteriori error estimate for a fist-kind integral equation. Math. Comput. 66(217), 139–155 (1997)
Christie, J., Griffiths, D.F., Mitchell, A.R., Zienkiewicz, O.C.: Finite element method for second order differential equations with significant first order derivatives. Int. J. Numer. Methods Eng. 10, 1389–1396 (1976)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)
Clemént, P.: Approximation by finite element functions using local regularization. RAIRO Sér. Rouge Anal. Numér. 2, 77–84 (1975)
Cohen, A., Dahmen, W., Welper, G.: Adaptivity and variational stablization for convection–diffusion equations. ESAIM Math. Model. Numer. Anal. 46(5), 1247–1273 (2012)
Dahmen, W., Graham, I.G., Hackbusch, W., Sauter, S.A.: Inverse inequalities on non-quasi-uniform meshes and application to the mortar element method. Math. Comput. 73(247), 1107–1138 (2003)
Du, S.H.: A new residual posteriori error estimates of mixed finite element methods for convection–diffusion–reaction equations. Numer. Methods PDE 30, 593–624 (2014)
Franca, L.P., Frey, S.L., Hughes, T.J.R.: Stabilized finite element methods I: application to the advective-diffusive model. Comput. Methods Appl. Mech. Eng. 95, 253–276 (1992)
Hughes, T.J.R., Brooks, A.: Streamline upwind/Petrov Garlerkin formulations for the convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 54, 199–259 (1982)
John, V.: A numerical study of a posteriori error estimators for convection–diffusion equations. Comput. Methods Appl. Mech. Eng. 190, 757–781 (2000)
John, V., Novo, J.: A robust SUPG norm a posteriori error estimator for stationary convection–diffusion equations. Comput. Methods Appl. Mech. Eng. 255, 289–305 (2013)
Kim, D., Park, E.J.: A posteriori error estimators for the upstream weighted mixed methods for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 197, 806–820 (2008)
Kunert, G.: A posteriori error estimation for convection dominated problems on anisotropic meshes. Math. Methods Appl. Sci. 26(7), 589–617 (2003)
Rapin, G., Lube, G.: A stabilized scheme for the Lagrange multiplier method for advection–diffusion equations. Math. Models Methods Appl. Sci. 14(7), 1035–1060 (2004)
Roos, H.G., Styness, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (2008)
Sangalli, G.: Global and local analysis for the residual-free bubbles method applied to advection-dominated problems. SIAM J. Numer. Anal. 38(4), 1496–1522 (2000)
Sangerlli, G.: A robust a posteriori estimator for the residual free bubbles method applied to advection-dominated problems. Numer. Math. 89, 379–399 (2001)
Sangalli, G.: Robust a-posteriori estimator for advection–diffusion-reaction problems. Math. Comput. 77(261), 41–70 (2008)
Verfürth, R.: A posteriori error estimators for convection–diffusion equations. Numer. Math. 80, 641–663 (1998)
Verfürth, R.: Robust a posteriori error estimates for stationary convection–diffusion equations. SIAM J. Numer. Anal. 43, 1766–1782 (2005)
Vohralík, M.: A posteriori error estimates for lowest-order mixed finite element discretizations of convection–diffusion–reaction equations. SIAM J. Numer. Anal. 45(4), 1570–1599 (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
Shaohong Du: Research partially supported by the National Natural Science Foundation of China under Grants 91430216, 11471031 and by The Education Science Foundation of Chongqing under Grants KJ120420
Zhimin Zhang: Research partially supported by the US National Science Foundation through Grant DMS-1419040 and by the National Natural Science Foundation of China under Grants 91430216, 11471031.
Rights and permissions
About this article
Cite this article
Du, S., Zhang, Z. A Robust Residual-Type a Posteriori Error Estimator for Convection–Diffusion Equations. J Sci Comput 65, 138–170 (2015). https://doi.org/10.1007/s10915-014-9972-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-014-9972-4
Keywords
- Convection–diffusion equations
- Streamline-diffusion finite element method
- A new dual norm
- Robust a posteriori error estimator