Skip to main content
Log in

A Kansa-Radial Basis Function Method for Elliptic Boundary Value Problems in Annular Domains

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We employ a Kansa-radial basis function (RBF) method for the numerical solution of elliptic boundary value problems in annular domains. This discretization leads, with an appropriate selection of collocation points and for any choice of RBF, to linear systems in which the matrices possess block circulant structures. These linear systems can be solved efficiently using matrix decomposition algorithms and fast Fourier transforms. A suitable value for the shape parameter in the various RBFs used is found using the leave-one-out cross validation algorithm. In particular, we consider problems governed by the Poisson equation, the inhomogeneous biharmonic equation and the inhomogeneous Cauchy–Navier equations of elasticity. In addition to its simplicity, the proposed method can both achieve high accuracy and solve large-scale problems. The feasibility of the proposed techniques is illustrated by several numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bialecki, B., Fairweather, G., Karageorghis, A.: Matrix decomposition algorithms for elliptic boundary value problems: a survey. Numer. Algorithms 56, 253–295 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Buhmann, M.D.: A new class of radial basis functions with compact support. Math. Comput. 70, 307–318 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations, Cambridge Monographs on Applied and Computational Mathematics, vol. 12. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  4. Chen, C.S., Fan, C.M., Wen, P.H.: The method of particular solutions for solving certain partial differential equations. Numer. Methods Partial Differ. Equ. 28, 506–522 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cheng, A.H.-D.: Multiquadric and its shape parameter—a numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation. Eng. Anal. Bound. Elem. 36, 220–239 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Davis, P.J.: Circulant Matrices, 2nd edn. AMS Chelsea Publishing, Providence (1994)

    MATH  Google Scholar 

  7. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB, Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishing Co., Pte. Ltd., Hackensack, NJ (2007)

    Google Scholar 

  8. Fasshauer, G.E.: Solving partial differential equations by collocation with radial basis functions. In: Le Mehaute, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 131–138. Vanderbilt University Press, Nashville, TN (1997)

    Google Scholar 

  9. Fasshauer, G.E., Zhang, J.G.: On choosing optimal shape parameters for RBF approximation. Numer. Algorithms 45, 345–368 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48(5–6), 853–867 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hartmann, F.: Elastostatics. In: Brebbia, C.A. (ed.) Progress in Boundary Element Methods, vol. 1, pp. 84–167. Pentech Press, London (1981)

    Google Scholar 

  13. Heryudono, A.R.H., Driscoll, T.A.: Radial basis function interpolation on irregular domain through conformal transplantation. J. Sci. Comput. 44, 286–300 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. http://www.math.usm.edu/cschen/JOMP/Example1.m

  15. Kansa, E.J.: Multiquadrics–a scattered data approximation scheme with applications to computational fluid-dynamics. II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8–9), 147–161 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kansa, E.J., Hon, Y.C.: Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Comput. Math. Appl. 39(7–8), 123–137 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Karageorghis, A.: Efficient Kansa-type MFS algorithm for elliptic problems. Numer. Algorithms 54, 261–278 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Karageorghis, A.: Efficient MFS algorithms for inhomogeneous polyharmonic problems. J. Sci. Comput. 46, 519–541 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Karageorghis, A.: The method of fundamental solutions for elliptic problems in circular domains with mixed boundary conditions. Numer. Algorithms 68, 185–211 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  20. Karageorghis, A., Chen, C.S.: A Kansa-RBF method for Poisson problems in annular domains. In: Brebbia, C.A., Cheng, A.H.-D. (eds.) Boundary Elements and Other Mesh Reduction Methods XXXVII, pp. 77–83. WIT Press, Southampton (2014)

    Google Scholar 

  21. Karageorghis, A., Chen, C.S., Smyrlis, Y.-S.: A matrix decomposition RBF algorithm: approximation of functions and their derivatives. Appl. Numer. Math. 57, 304–319 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Karageorghis, A., Chen, C.S., Smyrlis, Y.-S.: Matrix decomposition RBF algorithm for solving 3D elliptic problems. Eng. Anal. Bound. Elem. 33(12), 1368–1373 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Karageorghis, A., Marin, L.: Efficient MFS algorithms for problems in thermoelasticity. J. Sci. Comput. 56, 96–121 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Karageorghis, A., Smyrlis, Y.-S.: Matrix decomposition MFS algorithms for elasticity and thermo-elasticity problems in axisymmetric domains. J. Comput. Appl. Math. 206, 774–795 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Karageorghis, A., Smyrlis, Y.-S., Tsangaris, T.: A matrix decomposition MFS algorithm for certain linear elasticity problems. Numer. Algorithms 43, 123–149 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDEs. Comput. Math. Appl. 46, 891–902 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lee, C.K., Liu, X., Fan, S.C.: Local multiquadric approximation for solving boundary value problems. Comput. Mech. 30, 396–409 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  28. Li, M., Chen, W., Chen, C.S.: The localized RBFs collocation methods for solving high dimensional PDEs. Eng. Anal. Bound. Elem. 37, 1300–1304 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mai-Duy, N., Tran-Cong, T.: Indirect RBFN method with thin plate splines for numerical solution of differential equations. CMES Comput. Model. Eng. Sci. 4, 85–102 (2003)

    MATH  Google Scholar 

  30. Matérn, B.: Spatial Variation. Lecture Notes in Statistics, vol. 36, 2nd edn. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  31. Mouat, C.T.: Fast Algorithms and Preconditioning Techniques for Fitting Radial Basis Functions, Ph.D. thesis, Mathematics Department, University of Canterbury, New Zealand (2001)

  32. Rippa, S.: An algorithm for selecting a good value for the parameter \(c\) in radial basis function interpolation. Adv. Comput. Math. 11, 193–210 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  33. Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3, 251–264 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schaback, R.: Multivariate interpolation and approximation by translates of a basis function. In: Chiu, C.K., Schumaker, L.L. (eds.) Approximation Theory VIII, vol. 1, pp. 491–514. World Scientific Publishing Co., Inc, Singapore (1995)

    Google Scholar 

  35. The MathWorks Inc, 3 Apple Hill Dr., Natick, MA, Matlab

Download references

Acknowledgments

The authors wish to thank the referees for their helpful comments and suggestions which resulted in an improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yan Liu.

Appendix

Appendix

We consider the RBFs \(\phi _{mn}, \, m=1, \ldots , M, n=1, \ldots , N\). These satisfy, see, e.g., [7, Appendix D],

$$\begin{aligned} \phi _{mn}(x,y)= \Phi (r_{mn}), \quad r_{mn}^2(x,y)=(x-x_{mn})^2+(y-y_{mn})^2. \end{aligned}$$
(6.1)

It can be easily seen that

$$\begin{aligned} \dfrac{\partial \phi _{mn}}{\partial x} (x,y)= & {} \dfrac{\Phi ^\prime (r_{mn})}{r_{mn}} (x-x_{mn}), \quad \dfrac{\partial \phi _{mn}}{\partial y} (x,y) = \dfrac{\Phi ^\prime (r_{mn})}{r_{mn}}(y-y_{mn}),\end{aligned}$$
(6.2)
$$\begin{aligned} \frac{\partial ^2 \phi _{mn}}{\partial x^2} (x,y)= & {} \dfrac{\Phi ^\prime (r_{mn})}{r_{mn}} + \left( \dfrac{r_{mn}\Phi ^{\prime \prime }(r_{mn})-\Phi ^\prime (r_{mn})}{r_{mn}^3}\right) (x-x_{mn})^2,\end{aligned}$$
(6.3)
$$\begin{aligned} \frac{\partial ^2 \phi _{mn}}{\partial y^2} (x,y)= & {} \dfrac{\Phi ^\prime (r_{mn})}{r_{mn}} + \left( \dfrac{r_{mn}\Phi ^{\prime \prime }(r_{mn})-\Phi ^\prime (r_{mn})}{r_{mn}^3}\right) (y-y_{mn})^2, \end{aligned}$$
(6.4)

and

$$\begin{aligned} \frac{\partial ^2 \phi _{mn}}{\partial x \partial y} (x,y) = \left( \dfrac{r_{mn}\Phi ^{\prime \prime }(r_{mn})-\Phi ^\prime (r_{mn})}{r_{mn}^3}\right) (x-x_{mn}) (y-y_{mn}). \end{aligned}$$
(6.5)

Also,

$$\begin{aligned} \Delta \phi _{mn} (x,y) = \Phi ^{\prime \prime }(r_{mn}) +\dfrac{\Phi ^\prime (r_{mn})}{r_{mn}} \end{aligned}$$
(6.6)

and

$$\begin{aligned} \Delta ^2 \phi _{mn} (x,y) = \Phi ^{\prime \prime \prime \prime }(r_{mn}) +\dfrac{2\Phi ^{\prime \prime \prime }(r_{mn})}{r_{mn}}- \dfrac{\Phi ^{\prime \prime }(r_{mn})}{r_{mn}^2} +\dfrac{\Phi ^{\prime }(r_{mn})}{r_{mn}^3}. \end{aligned}$$
(6.7)

In the sequel, we shall be using the notation (cf. (2.8))

$$\begin{aligned} \delta _{m_1,m_2} x= & {} x_{m_1,n_1}-x_{m_2,n_2} = \mathsf{r}_{n_1} \cos ({\vartheta }_{m_1} + \frac{2\pi \alpha _{n_1}}{N})-\mathsf{r}_{n_2} \cos ({\vartheta }_{m_2} + \frac{2\pi \alpha _{n_2}}{N}),\nonumber \\ \delta _{m_1,m_2} y= & {} y_{m_1,n_1}-y_{m_2,n_2} = \mathsf{r}_{n_1} \sin ({\vartheta }_{m_1} + \frac{2\pi \alpha _{n_1}}{N})-\mathsf{r}_{n_2} \sin ({\vartheta }_{m_2} + \frac{2\pi \alpha _{n_2}}{N}). \end{aligned}$$
(6.8)

We shall also need the normal derivatives on the boundary \(\partial \Omega _1\) which are given by

$$\begin{aligned} (\mathrm{n}_x, \mathrm{n}_y) (x_{m_1,1},y_{m_1,1}) = -\left( \cos ({\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}),\; \sin ({\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N})\right) . \end{aligned}$$
(6.9)

We next state and prove the following lemmata:

Lemma 1

For any radial function, each submatrix \(\left( {A}_{n_1,n_2}\right) \) in (2.12) possesses a circulant structure.

Proof

We first consider the submatrices \(\left( {A}_{n_1,n_2}\right) , \; n_1=2, \ldots , N-1, \; n_2=1, \ldots , N,\) which are defined by (2.13a). From (6.6), \(\Delta \phi _{m_2,n_2}\) is an RBF, i.e. it is a function of \(r_{m_2,n_2}\) (cf. (6.1)). Moreover,

$$\begin{aligned}&r_{m_2,n_2}^2(x_{m_1,n_1},y_{m_1,n_1})= (\delta _{m_1,m_2} x)^2+(\delta _{m_1,m_2} y)^2=\mathsf{r}_{n_1}^2+\mathsf{r}_{n_2}^2\\&\quad - 2\mathsf{r}_{n_1}\mathsf{r}_{n_2} \cos \left( {\vartheta }_{m_1}-{\vartheta }_{m_2} + \frac{2\pi (\alpha _{n_1}-\alpha _{n_2}) }{N}\right) , \end{aligned}$$

shows that for fixed \(n_1, n_2\), the quantity \(r_{m_2,n_2}(x_{m_1,n_1},y_{m_1,n_1})\) only depends on \(({\vartheta }_{m_1}-{\vartheta }_{m_2})\), i.e. \(({m_1}-{m_2})\) and therefore the submatrices are circulant.

The proof that the submatrices \(\left( {A}_{n_1,n_2}\right) , \; n_1=1, N, \; n_2=1, \ldots , N\), defined by (2.13b)–(2.13c), are circulant in the case of Dirichlet boundary conditions is identical since their elements involve the RBFs \(\phi _{m_2,n_2}\), which only depend on \(r_{m_2,n_2}\).

In the case of a Neumann boundary condition on \(\partial \Omega _1\), however, we have that the submatrices \(\left( {A}_{1,n}\right) , \; n=1, \ldots , N\), are defined by (2.15), or

$$\begin{aligned} \left( A_{1,n_2}\right) _{m_1,m_2}= & {} \dfrac{\partial \phi _{m_2,n_2}}{\partial x} (x_{m_1,1},y_{m_1,1}) \mathrm{n}_x (x_{m_1,1},y_{m_1,1})\\&+ \,\dfrac{\partial \phi _{m_2,n_2}}{\partial y} (x_{m_1,1},y_{m_1,1}) \mathrm{n}_y (x_{m_1,1},y_{m_1,1}), \end{aligned}$$

and from (6.2) and (6.9) we obtain

$$\begin{aligned}&= - \dfrac{\Phi ^\prime (r_{m_2n_2})(x_{m_1,1},y_{m_1,1})}{r_{m_2n_2}(x_{m_1,1},y_{m_1,1}))} \left[ (x_{m_1,1}-x_{m_2,n_2}) \cos \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \right. \nonumber \\&\quad \left. +\, (y_{m_1,1}-y_{m_2,n_2}) \sin \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \right] . \end{aligned}$$

Ignoring the radial part, we examine

$$\begin{aligned}&(x_{m_1,1}-x_{m_2,n_2}) \cos \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) + (y_{m_1,1}-y_{m_2,n_2}) \sin \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \nonumber \\&\quad =\left( \mathsf{r}_{1} \cos \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) - \mathsf{r}_{n_2} \cos \left( {\vartheta }_{m_2} + \frac{2\pi \alpha _{n_2}}{N}\right) \right) \cos \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \nonumber \\&\qquad +\left( \mathsf{r}_{1} \sin \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) - \mathsf{r}_{n_2} \sin \left( {\vartheta }_{m_2} + \frac{2\pi \alpha _{n_2}}{N}\right) \right) \sin \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \nonumber \\&\quad =\mathsf{r}_{1}-\mathsf{r}_{n_2} \cos \left( {\vartheta }_{m_2}-{\vartheta }_{m_1} + \frac{2\pi \left( \alpha _{n_2}-\alpha _1\right) }{N}\right) , \end{aligned}$$
(6.10)

which, again, only depends on \((m_2-m_1)\). Hence, this part is also radial and the corresponding submatrices are circulant. \(\square \)

Following identical arguments we also arrive at the corresponding result for the biharmonic case.

Lemma 2

For any radial function, each submatrix \(\left( {A}_{n_1,n_2}\right) \) in (2.12) corresponding to collocation scheme (3.2), for both the first and the second biharmonic problem, possesses a circulant structure.

Finally, we consider the corresponding result for the Cauchy–Navier equations of elasticity.

Lemma 3

For any radial function, each submatrix \(\left( \tilde{A}_{n_1,n_2}\right) \) in (4.9) possesses a \(2 \times 2\) block circulant structure.

Proof

In order to prove the lemma we need to show that, see, e.g. [23],

$$\begin{aligned} R_{{\vartheta }_{m_1}} \left( A_{n_1,n_2}\right) _{m_1,m_2} R_{{\vartheta }_{m_2}}= & {} R_{{\vartheta }_{m_1+m}} \left( A_{n_1,n_2}\right) _{m_1+m,m_2+m} R_{{\vartheta }_{m_2+m}}, \nonumber \\&m_1,m_2=1,\ldots ,M, \; n_1, n_2=1, \ldots , N, \end{aligned}$$
(6.11)

provided \(m_1+m, m_2+m \le M\). In case \(m_1+m > M\), \(m_1+m\) is replaced by \(m_1+m-M\) and in case \(m_2+m > M\), \(m_2+m\) is replaced by \(m_2+m-M\).

Since \(R_{{\vartheta }_k}^2=I_2\) proving (6.11) is equivalent to proving

$$\begin{aligned}&R_{{\vartheta }_{m_1+m}} R_{{\vartheta }_{m_1}} \left( A_{n_1,n_2}\right) _{m_1,m_2} R_{{\vartheta }_{m_2}}R_{{\vartheta }_{m_1+m}}=\left( A_{n_1,n_2}\right) _{m_1+m,m_2+m},\nonumber \\&m_1,m_2=1,\ldots ,M, \; n_1, n_2=1, \ldots , N. \end{aligned}$$
(6.12)

However,

$$\begin{aligned} R_{{\vartheta }_{m_1+m}} R_{{\vartheta }_{m_1}}= & {} \left( \begin{array}{cc} \cos {\vartheta }_{m_1+m} &{} \sin {\vartheta }_{m_1+m} \\ \sin {\vartheta }_{m_1+m} &{} -\!\cos {\vartheta }_{m_1+m} \end{array} \right) \! \left( \begin{array}{cc} \cos {\vartheta }_{m_1} &{} \sin {\vartheta }_{m_1} \\ \sin {\vartheta }_{m_1} &{} -\!\cos {\vartheta }_{m_1} \end{array} \right) \! \\= & {} \left( \begin{array}{cc} \cos {\vartheta }_m &{} -\sin {\vartheta }_m \\ \sin {\vartheta }_m &{} \!\cos {\vartheta }_m \end{array} \right) \! = W_{{\vartheta }_m}, \end{aligned}$$

and

$$\begin{aligned} R_{{\vartheta }_{m_1}} R_{{\vartheta }_{m_1+m}}= & {} \left( \begin{array}{cc} \cos {\vartheta }_{m_1} &{} \sin {\vartheta }_{m_1} \\ \sin {\vartheta }_{m_1} &{} -\!\cos {\vartheta }_{m_1} \end{array} \right) \! \left( \begin{array}{cc} \cos {\vartheta }_{m_1+m} &{} \sin {\vartheta }_{m_1+m} \\ \sin {\vartheta }_{m_1+m} &{} -\!\cos {\vartheta }_{m_1+m} \end{array} \right) \! \\= & {} \left( \begin{array}{cc} \cos {\vartheta }_m &{} \sin {\vartheta }_m \\ -\sin {\vartheta }_m &{} \!\cos {\vartheta }_m \end{array} \right) \! = W_{{\vartheta }_m}^{-1}. \end{aligned}$$

Hence proving (6.12) is equivalent to proving that

$$\begin{aligned} W_{{\vartheta }_m} \left( A_{n_1,n_2}\right) _{m_1,m_2} W_{{\vartheta }_m}^{-1} =\left( A_{n_1,n_2}\right) _{m_1+m,m_2+m}. \end{aligned}$$
(6.13)

From (4.4a), for \(m_1,m_2=1,\ldots ,M, \; n_1=2, \ldots , N-1, \; n_2=1, \ldots , N\), we can write

$$\begin{aligned}&\left( A_{n_1,n_2}\right) _{m_1,m_2}=\mu \Delta \phi _{m_2,n_2}(x_{m_1,n_1},y_{m_1,n_1}) I_2\nonumber \\&\quad +\, \dfrac{\mu }{1-2\nu } \left( \begin{array}{c c} \dfrac{\partial ^2 \phi _{m_2,n_2}}{\partial x^2} (x_{m_1,n_1},y_{m_1,n_1}) &{} \dfrac{\partial ^2 \phi _{m_2,n_2}}{\partial x \partial y} (x_{m_1,n_1},y_{m_1,n_1}) \\ \dfrac{\partial ^2 \phi _{m_2,n_2}}{\partial x \partial y} (x_{m_1,n_1},y_{m_1,n_1}) &{} \dfrac{\partial ^2 \phi _{m_2,n_2}}{\partial y^2} (x_{m_1,n_1},y_{m_1,n_1}) \end{array} \right) . \end{aligned}$$
(6.14)

We first consider the first term in (6.14), namely \(\mu \Delta \phi _{m_2,n_2}(x_{m_1,n_1},y_{m_1,n_1}) I_2\).

We clearly have that

$$\begin{aligned} \mu \Delta \phi _{m_2,n_2}(x_{m_1,n_1},y_{m_1,n_1}) W_{{\vartheta }_m} I_2 W_{{\vartheta }_m}^{-1}= & {} \mu \Delta \phi _{m_2,n_2}(x_{m_1,n_1},y_{m_1,n_1}) I_2\\= & {} \mu \Delta \phi _{m_2+m,n_2}(x_{m_1+m,n_1},y_{m_1+m,n_1}) I_2, \end{aligned}$$

since the Laplacian of \(\phi _{m_2,n_2}(x,y)\) is radial from (6.6) and

$$\begin{aligned}&(\delta _{m_1,m_2} x)^2+(\delta _{m_1,m_2} y)^2=\mathsf{r}_{n_1}^2+\mathsf{r}_{n_2}^2- 2\mathsf{r}_{n_1}\mathsf{r}_{n_2} \cos \left( {\vartheta }_{m_1}-{\vartheta }_{m_2} + \frac{2\pi (\alpha _{n_1}-\alpha _{n_2}) }{N}\right) \nonumber \\&\quad =(\delta _{m_1+m,m_2+m} x)^2+(\delta _{m_1+m,m_2+m} y)^2. \end{aligned}$$
(6.15)

Therefore, the first term in (6.14) satisfies (6.13).

For the second term in (6.14), from (6.3)–(6.5) and ignoring the radial parts we only need show that

$$\begin{aligned}&\left( \begin{array}{ll} \cos {\vartheta }_m &{} -\sin {\vartheta }_m \\ \sin {\vartheta }_m &{} \!\cos {\vartheta }_m \end{array} \right) \! \left( \begin{array}{c c} (\delta _{m_1,m_2} x)^2 &{} (\delta _{m_1,m_2} x)(\delta _{m_1,m_2} y)\\ (\delta _{m_1,m_2} x)(\delta _{m_1,m_2} y) &{} (\delta _{m_1,m_2} y)^2 \end{array} \right) \left( \begin{array}{ll} \cos {\vartheta }_m &{} \sin {\vartheta }_m \\ -\sin {\vartheta }_m &{} \!\cos {\vartheta }_m \end{array} \right) \!\nonumber \\&\quad = \left( \begin{array}{c c} (\delta _{m_1+m,m_2+m} x)^2 &{} (\delta _{m_1+m,m_2+m} x)(\delta _{m_1+m,m_2+m} y)\\ (\delta _{m_1+m,m_2+m} x)(\delta _{m_1+m,m_2+m} y) &{} (\delta _{m_1+m,m_2+m} y)^2 \end{array} \right) . \end{aligned}$$
(6.16)

By performing the multiplications on the left hand side of (6.16) we obtain that it is equal to

$$\begin{aligned} \left( \begin{array}{cc} (\cos {\vartheta }_m\delta _{m_1,m_2} x-\sin {\vartheta }_m\delta _{m_1,m_2}y)^2 &{} (\cos {\vartheta }_m\delta _{m_1,m_2} x-\sin {\vartheta }_m\delta _{m_1,m_2}y)(\sin {\vartheta }_m\delta _{m_1,m_2} x +\cos {\vartheta }_m\delta _{m_1,m_2}y) \\ (\cos {\vartheta }_m\delta _{m_1,m_2} x-\sin {\vartheta }_m\delta _{m_1,m_2}y)(\sin {\vartheta }_m\delta _{m_1,m_2} x +\cos {\vartheta }_m\delta _{m_1,m_2}y) &{} (\sin {\vartheta }_m\delta _{m_1,m_2} x+\cos {\vartheta }_m\delta _{m_1,m_2}y)^2 \end{array} \right) \!. \end{aligned}$$

Moreover, it can be easily shown that

$$\begin{aligned} \cos {\vartheta }_m\delta _{m_1,m_2} x-\sin {\vartheta }_m\delta _{m_1,m_2}y= & {} \mathsf{r}_{n_1} \cos \left( {\vartheta }_{m_1+m} + \frac{2\pi \alpha _{n_1}}{N}\right) \\&\quad -\mathsf{r}_{n_2} \cos \left( {\vartheta }_{m_2+m} + \frac{2\pi \alpha _{n_2}}{N}\right) \end{aligned}$$

and

$$\begin{aligned} \sin {\vartheta }_m\delta _{m_1,m_2} x\!+\!\cos {\vartheta }_m\delta _{m_1,m_2}y \!=\!\mathsf{r}_{n_1} \sin \left( {\vartheta }_{m_1+m} \!+ \!\frac{2\pi \alpha _{n_1}}{N}\right) \!-\!\mathsf{r}_{n_2} \sin \left( {\vartheta }_{m_2+m} \!+ \!\frac{2\pi \alpha _{n_2}}{N}\right) , \end{aligned}$$

from which (6.16) follows. Hence, the second term in (6.14) also satisfies (6.13).

We next need to prove that

$$\begin{aligned}&W_{{\vartheta }_m} \left( A_{1,n_2}\right) _{m_1,m_2} W_{{\vartheta }_m}^{-1} =\left( A_{1,n_2}\right) _{m_1+m,m_2+m} \quad \text{ and } \quad \nonumber \\&W_{{\vartheta }_m} \left( A_{N,n_2}\right) _{m_1,m_2} W_{{\vartheta }_m}^{-1} =\left( A_{N,n_2}\right) _{m_1+m,m_2+m}. \end{aligned}$$
(6.17)

Since from (4.4b) we can write

$$\begin{aligned} \left( A_{1,n_2}\right) _{m_1,m_2}=\phi _{m_2,n_2}(x_{m_1,1},y_{m_1,1}) I_2 \quad \text{ and } \quad \left( A_{N,n_2}\right) _{m_1,m_2}=\phi _{m_2,n_2}(x_{m_1,N},y_{m_1,N}) I_2, \end{aligned}$$

from (6.15), following a similar argument to the one used for the first term of (6.14), (6.17) follows.

Finally, we show that if instead of the displacements \(u_1, u_2\) we have that the tractions \(t_1, t_2\) are prescribed on, say, the boundary \(\partial \Omega _1\), cf. Sect. 4.2.1, then

$$\begin{aligned} W_{{\vartheta }_m} \left( A_{1,n_2}\right) _{m_1,m_2} W_{{\vartheta }_m}^{-1} =\left( A_{1,n_2}\right) _{m_1+m,m_2+m} \end{aligned}$$
(6.18)

is still true.

We write

$$\begin{aligned} \left( A_{1,n}\right) _{m_1,m_2}=\left( \begin{array}{cc} T_{11} &{} T_{12} \\ T_{21} &{} T_{22} \end{array}\right) , \end{aligned}$$
(6.19)

where \(T_{ij}, i,j=1,2,\) are the appropriate quantities in (4.6).

We can easily show that

$$\begin{aligned}&W_{{\vartheta }_m} \left( \begin{array}{c c} T_{11} &{} T_{12} \\ T_{21} &{} T_{22} \end{array}\right) W_{{\vartheta }_m}^{-1}\\&\quad = \left( \begin{array}{c c} \cos ^2 {\vartheta }_m T_{11} -\cos {\vartheta }_m\sin {\vartheta }_m (T_{21} + T_{12}) + \sin ^2 {\vartheta }_m T_{22}&{} \cos ^2 {\vartheta }_m T_{12} +\cos {\vartheta }_m\sin {\vartheta }_m (T_{11} - T_{22}) - \sin ^2 {\vartheta }_m T_{21} \\ \cos ^2 {\vartheta }_m T_{21} +\cos {\vartheta }_m\sin {\vartheta }_m (T_{11} - T_{22}) - \sin ^2 {\vartheta }_m T_{12} &{} \sin ^2 {\vartheta }_m T_{11} +\cos {\vartheta }_m\sin {\vartheta }_m (T_{21} + T_{12}) + \cos ^2 {\vartheta }_m T_{22} \end{array}\right) . \end{aligned}$$

We shall first show that the first term in (4.6) is radial. Using the notation of (6.8) with \(n_1=1\), we have from (6.2) that

$$\begin{aligned}&\dfrac{\partial \phi _{m_2,n}}{\partial x}(x_{m_1,1},y_{m_1,1})\mathrm{n}_x(x_{m_1,1},y_{m_1,1}) + \dfrac{\partial \phi _{m_2,n}}{\partial y}(x_{m_1,1},y_{m_1,1})\mathrm{n}_y (x_{m_1,1},y_{m_1,1})\\&\quad =\dfrac{\Phi ^\prime (r_{m_2n})}{r_{m_2n}} \left[ \delta _{m_1,m_2}x \, \mathrm{n}_x(x_{m_1,1},y_{m_1,1})+\delta _{m_1,m_2}y \, \mathrm{n}_y(x_{m_1,1},y_{m_1,1})\right] , \end{aligned}$$

and ignoring the radial factor, we have, using (6.10) that

$$\begin{aligned}&\delta _{m_1,m_2}x \, \mathrm{n}_x(x_{m_1,1},y_{m_1,1})+\delta _{m_1,m_2}y \, \mathrm{n}_y(x_{m_1,1},y_{m_1,1})\\&\quad =\mathsf{r}_{1}-\mathsf{r}_{n_2} \cos ({\vartheta }_{m_2}-{\vartheta }_{m_1} + \frac{2\pi (\alpha _{n_2}-\alpha _1)}{N}), \end{aligned}$$

which only depends on \((m_2-m_1)\), hence it is radial.

We next consider the second term in (4.6). Dropping the multiplying constants and the obviously radial parts, and with the appropriate notation, we consider the quantities

$$\begin{aligned} \tilde{T}_{11}(m_1,m_2)= & {} \delta _{m_1,m_2}x \, \mathrm{n}_x(x_{m_1,1},y_{m_1,1})= \mathsf{r}_{1} \cos ^2 \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \\&-\,\mathsf{r}_{n_2} \cos \left( {\vartheta }_{m_2} + \frac{2\pi \alpha _{n_2}}{N}\right) \cos \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) ,\\ \tilde{T}_{12}(m_1,m_2)= & {} 2\nu \delta _{m_1,m_2}y \, \mathrm{n}_x(x_{m_1,1},y_{m_1,1}) +(1-2\nu ) \delta _{m_1,m_2}x \, \mathrm{n}_y(x_{m_1,1},y_{m_1,1})\\= & {} \mathsf{r}_{1} \sin \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \cos \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \\&-\, \mathsf{r}_{n_2} \left( 2 \nu \cos \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \sin \left( {\vartheta }_{m_2} + \frac{2\pi \alpha _{n_2}}{N}\right) \right. \\&+\left. (1-2\nu ) \sin \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \cos \left( {\vartheta }_{m_2} + \frac{2\pi \alpha _{n_2}}{N}\right) \right) \\= & {} \mathsf{r}_{1} \sin \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \cos \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \\&-\, \mathsf{r}_{n_2} \left( 2 \nu \sin \left( {\vartheta }_{m_2}-{\vartheta }_{m_1} + \frac{2\pi (\alpha _{n_2}-\alpha _1)}{N}\right) \right. \\&\left. +\sin \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \cos \left( {\vartheta }_{m_2} + \frac{2\pi \alpha _{n_2}}{N}\right) \right) ,\\&\tilde{T}_{21}(m_1,m_2)= (1-2\nu ) \delta _{m_1,m_2}y \, \mathrm{n}_x(x_{m_1,1},y_{m_1,1}) \\&\quad +\, 2\nu \delta _{m_1,m_2}x \, \mathrm{n}_y(x_{m_1,1},y_{m_1,1})\\= & {} \mathsf{r}_{1} \sin \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \cos \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \\&-\, \mathsf{r}_{n_2} \left( (1-2 \nu ) \cos \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \sin \left( {\vartheta }_{m_2} + \frac{2\pi \alpha _{n_2}}{N}\right) \right. \\&+\left. 2 \nu \sin \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \cos ({\vartheta }_{m_2} + \frac{2\pi \alpha _{n_2}}{N}) \right) \\= & {} \mathsf{r}_{1} \sin \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \cos \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \\&-\, \mathsf{r}_{n_2} \left( 2 \nu \sin \left( {\vartheta }_{m_1}-{\vartheta }_{m_2} + \frac{2\pi (\alpha _1-\alpha _{n_2})}{N}\right) \right. \\&+\left. \cos \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \sin \left( {\vartheta }_{m_2} + \frac{2\pi \alpha _{n_2}}{N}\right) \right) , \\ \tilde{T}_{22}(m_1,m_2)= & {} \delta _{m_1,m_2}y \, \mathrm{n}_y(x_{m_1,1},y_{m_1,1})= \mathsf{r}_{1} \sin ^2 \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) \\&-\,\mathsf{r}_{n_2} \sin \left( {\vartheta }_{m_2} + \frac{2\pi \alpha _{n_2}}{N}\right) \sin \left( {\vartheta }_{m_1} + \frac{2\pi \alpha _1}{N}\right) . \end{aligned}$$

By using (6.9), we first consider the term

$$\begin{aligned}&\cos ^2 {\vartheta }_m \tilde{T}_{11} -\cos {\vartheta }_m\sin {\vartheta }_m (\tilde{T}_{21} + \tilde{T}_{12}) + \sin ^2 {\vartheta }_m \tilde{T}_{22}\\&\quad = \cos ^2 {\vartheta }_m \delta _{m_1,m_2}x \, \mathrm{n}_x -\cos {\vartheta }_m\sin {\vartheta }_m \left( \delta _{m_1,m_2}y \, \mathrm{n}_x+ \delta _{m_1,m_2}x \, \mathrm{n}_y \right) + \sin ^2 {\vartheta }_m \delta _{m_1,m_2}y \, \mathrm{n}_y\\&\quad =\mathsf{r}_{1} \cos ^2 \left( {\vartheta }_{m_1}\!+\! {\vartheta }_{m} \!+\! \frac{2\pi \alpha _1}{N}\right) -\mathsf{r}_{n_2} \cos \left( {\vartheta }_{m_2} + {\vartheta }_{m} \!+\! \frac{2\pi \alpha _{n_2}}{N}\right) \cos \left( {\vartheta }_{m_1}+ {\vartheta }_{m} \!+\! \frac{2\pi \alpha _1}{N}\right) \\&\quad =\tilde{T}_{11}(m_1+m,m_2+m). \end{aligned}$$

We next consider

$$\begin{aligned}&\cos ^2 {\vartheta }_m \tilde{T}_{12} +\cos {\vartheta }_m\sin {\vartheta }_m (\tilde{T}_{11} - \tilde{T}_{22}) - \sin ^2 {\vartheta }_m \tilde{T}_{21}\\&\quad =\cos ^2 {\vartheta }_m \left( 2\nu \delta _{m_1,m_2}y \, \mathrm{n}_x \!+\!(1\!-\!2\nu ) \delta _{m_1,m_2}x \, \mathrm{n}_y\right) \!+\!\cos {\vartheta }_m\sin {\vartheta }_m (\delta _{m_1,m_2}x \, \mathrm{n}_x \!- \!\delta _{m_1,m_2}y \, \mathrm{n}_y)\\&\quad \quad - \sin ^2 {\vartheta }_m \left( (1-2\nu ) \delta _{m_1,m_2}y \, \mathrm{n}_x + 2\nu \delta _{m_1,m_2}x \, \mathrm{n}_y \right) =-2\nu \mathsf{r}_{n_2} \sin ({\vartheta }_{m_2}-{\vartheta }_{m_1} \\&\qquad + \frac{2\pi (\alpha _{n_2}-\alpha _1)}{N}) +\mathsf{r}_{1} \sin \left( {\vartheta }_{m_1} +{\vartheta }_m + \frac{2\pi \alpha _1}{N}\right) \cos \left( {\vartheta }_{m_1} +{\vartheta }_m + \frac{2\pi \alpha _1}{N}\right) \\&\quad \quad - \mathsf{r}_{n_2} \sin \left( {\vartheta }_{m_1} +{\vartheta }_m + \frac{2\pi \alpha _1}{N}\right) \cos \left( {\vartheta }_{m_2} +{\vartheta }_m + \frac{2\pi \alpha _{n_2}}{N}\right) =\tilde{T}_{12}(m_1+m,m_2+m). \end{aligned}$$

Similarly, we have that

$$\begin{aligned}&\cos ^2 {\vartheta }_m \tilde{T}_{21} +\cos {\vartheta }_m\sin {\vartheta }_m (\tilde{T}_{11} - \tilde{T}_{22}) - \sin ^2 {\vartheta }_m \tilde{T}_{12}=\cos ^2 {\vartheta }_m \\&\qquad \times \left( (1-2\nu ) \delta _{m_1,m_2}y \, \mathrm{n}_x + 2\nu \delta _{m_1,m_2}x \, \mathrm{n}_y\right) +\cos {\vartheta }_m\sin {\vartheta }_m (\delta _{m_1,m_2}x \, \mathrm{n}_x - \delta _{m_1,m_2}y \, \mathrm{n}_y)\\&\qquad - \sin ^2 {\vartheta }_m \left( 2\nu \delta _{m_1,m_2}y \, \mathrm{n}_x + (1-2\nu ) \delta _{m_1,m_2}x \, \mathrm{n}_y \right) =-2\nu \mathsf{r}_{n_2} \sin \left( {\vartheta }_{m_1}-{\vartheta }_{m_2} \right. \\&\qquad \left. + \,\frac{2\pi (\alpha _1-\alpha _{n_2})}{N}\right) +\mathsf{r}_{1} \sin \left( {\vartheta }_{m_1} +{\vartheta }_m + \frac{2\pi \alpha _1}{N}\right) \cos \left( {\vartheta }_{m_1} +{\vartheta }_m + \frac{2\pi \alpha _1}{N}\right) \\&\qquad - \,\mathsf{r}_{n_2} \cos \left( {\vartheta }_{m_1} +{\vartheta }_m + \frac{2\pi \alpha _1}{N}\right) \sin \left( {\vartheta }_{m_2} +{\vartheta }_m + \frac{2\pi \alpha _{n_2}}{N}\right) =\tilde{T}_{21}(m_1+m,m_2+m). \end{aligned}$$

Finally,

$$\begin{aligned}&\sin ^2 {\vartheta }_m \tilde{T}_{11} +\cos {\vartheta }_m\sin {\vartheta }_m (\tilde{T}_{21} + \tilde{T}_{12}) + \cos ^2 {\vartheta }_m \tilde{T}_{22}\\&\quad = \sin ^2 {\vartheta }_m \delta _{m_1,m_2}x \, \mathrm{n}_x +\cos {\vartheta }_m\sin {\vartheta }_m \left( \delta _{m_1,m_2}y \, \mathrm{n}_x+ \delta _{m_1,m_2}x \, \mathrm{n}_y \right) + \cos ^2 {\vartheta }_m \delta _{m_1,m_2}y \, \mathrm{n}_y.\\&\quad =\mathsf{r}_{1} \sin ^2 \left( {\vartheta }_{m_1}\!+\! {\vartheta }_{m} \!+\! \frac{2\pi \alpha _1}{N}\right) \!-\!\mathsf{r}_{n_2} \sin \left( {\vartheta }_{m_2} + {\vartheta }_{m} \!+\! \frac{2\pi \alpha _{n_2}}{N}\right) \sin \left( {\vartheta }_{m_1}\!+\! {\vartheta }_{m} \!+\! \frac{2\pi \alpha _1}{N}\right) \\&\quad =\tilde{T}_{22}(m_1+m,m_2+m). \end{aligned}$$

Therefore (6.18) is satisfied and the proof is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XY., Karageorghis, A. & Chen, C.S. A Kansa-Radial Basis Function Method for Elliptic Boundary Value Problems in Annular Domains. J Sci Comput 65, 1240–1269 (2015). https://doi.org/10.1007/s10915-015-0009-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0009-4

Keywords

Mathematics Subject Classification