Abstract
Nonlinear systems of equations demonstrate complicated regularity features that are often obfuscated by overly diffuse numerical methods. Using a discontinuous Galerkin finite element method, we study a nonlinear system of advection–diffusion–reaction equations and aspects of its regularity. For numerical regularization, we present a family of solutions consisting of: (1) a sharp, computationally efficient slope limiter, known as the BDS limiter, (2) a standard spectral filter, and (3) a novel artificial diffusion algorithm with a solution-dependent entropy sensor. We analyze these three numerical regularization methods on a classical test in order to test the strengths and weaknesses of each, and then benchmark the methods against a large application model.











Similar content being viewed by others
References
Abgrall, R.: On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J. Comput. Phys. 114(1), 45–58 (1994). doi:10.1006/jcph.1994.1148
Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2001/02). ISSN 0036–1429. doi:10.1137/S0036142901384162
Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Discontinuous Galerkin methods for elliptic problems. In: Discontinuous Galerkin methods (Newport, RI, 1999). Lecture Notes in Computer Science Engineering, vol. 11, pp. 89–101. Springer, Berlin (2000)
Barter, G.E., Darmofal, D.L.: Shock capturing with PDE-based artificial viscosity for DGFEM: part I. Formulation. J. Comput. Phys. 229(5), 1810–1827 (2010). doi:10.1016/j.jcp.2009.11.010
Barth, T., Jesperson, D.C.: The design and application of upwind schems and unstructured meshes. AIAA, paper 89–0366 (1989)
Bell, J.B., Dawson, C.N., Shubin, G.R.: An unsplit, higher order godunov method for scalar conservation laws in multiple dimensions. J. Comput. Phys. 74(1), 1–24 (1988). ISSN 0021–9991. doi:10.1016/0021-9991(88)90065-4. http://www.sciencedirect.com/science/article/B6WHY-4DD1T8P-N0/2/aba1bf519b0924a0a20968665aa37091
Bunya, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A wetting and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the shallow water equations. Comput. Methods Appl. Mech. Eng. 198(17–20), 1548–1562 (2009). doi:10.1016/j.cma.2009.01.008
Bunya, S., Dietrich, J.C., Westerink, J.J., Ebersole, B.A., Smith, J.M., Atkinson, J.H., Jensen, R., Resio, D.T., Luettich, R.A., Dawson, C., Cardone, V.J., Cox, A.T., Powell, M.D., Westerink, H.J., Roberts, H.J.: A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part I: Model Development and Validation. Mon. Weather Rev. 138(2), 345–377 (2010). doi:10.1175/2009MWR2906.1
Casoni, E., Peraire, J., Huerta, A.: One-dimensional shock-capturing for high-order discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 71(6), 737–755 (2013). doi:10.1002/fld.3682
Cockburn, B.: An introduction to the discontinuous Galerkin method for convection-dominated problems. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (Cetraro, 1997). Lecture Notes in Mathematics, vol. 1697, pp. 151–268. Springer, Berlin (1998)
Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comp. 52(186), 411–435 (1989)
Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998). (electronic)
Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)
Cockburn, B., Shu, C.W.: The runge-kutta discontinuous galerkin method for conservation laws v: multidimensional systems. J. Comput. Phys. 141(2), 199–224(1998). ISSN 0021–9991. doi:10.1006/jcph.1998.5892. http://www.sciencedirect.com/science/article/B6WHY-45J593T6N/2/34d62c09260f2d7d0af3099d456a3b72
Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)
Dawson, C., Kubatko, E.J., Westerink, J.J., Trahan, C., Mirabito, C., Michoski, C., Panda, N.: Discontinuous Galerkin methods for modeling hurricane storm surge. Adv. Water Resour. 34(9), 1165–1176 (2011). ISSN 0309–1708. doi:10.1016/j.advwatres.2010.11.004. http://www.sciencedirect.com/science/article/pii/S0309170810002137. New Computational Methods and Software Tools
Dawson, C., Westerink, J.J., Feyen, J.C., Pothina, D.: Continuous, discontinuous and coupled discontinuous–continuous Galerkin finite element methods for the shallow water equations. Int. J. Numer. Methods Fluids 52(1), 63–88 (2006). doi:10.1002/fjd.1156
DuChene, M., Spagnuolo, A.M., Kubatko, E., Westerink, J., Dawson, C.: A framework for running the ADCIRC discontinuous Galerkin storm surge model on a GPU. Procedia Comput. Sci. 4, 2017–2026 (2011). doi:10.1016/j.procs.2011.04.220. http://www.sciencedirect.com/science/article/pii/S187705091100278X
Durlofsky, L.J., Engquist, B., Osher, S.: Triangle based adaptive stencils for the solution of hyperbolic conservation laws. J. Comput. Phys. 98(1), 64–73 (1992). ISSN 0021–9991. doi:10.1016/0021-9991(92)90173-V. http://www.sciencedirect.com/science/article/B6WHY-4DD1P88-NW/2/14f5775efbf9049e31e12411e2e34238
Feistauer, M., Felcman, J., Straškraba, I.: Mathematical and Computational Methods for Compressible Flow. Numerical Mathematics and Scientific Computation. Oxford University Press (2003). ISBN 0-19-850588-4
Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods. In: Texts in Applied Mathematics, vol. 54. Springer, New York, (2008). ISBN 978-0-387-72065-4. doi:10.1007/978-0-387-72067-8. Algorithms, analysis, and applications
Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.-D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61(SI), 86–93 (2012). doi:10.1016/j.compfluid.2012.03.006
Ketcheson, D., Parsani, M., LeVeque, R.: High-order wave propagation algorithms for hyperbolic systems. SIAM J. Sci. Comput. 35(1), A351–A377 (2013). doi:10.1137/110830320
Kloeckner, A., Warburton, T., Bridge, J., Hesthaven, J.S.: Nodal discontinuous Galerkin methods on graphics processors. J. Comput. Phys. 228(21), 7863–7882 (2009). doi:10.1016/j.jcp.2009.06.041
Kloeckner, A., Warburton, T., Hesthaven, J.S.: Viscous shock capturing in a time-explicit discontinuous Galerkin method. Math. Model. Nat. Phenom. 6(3), 57–83 (2011). doi:10.1051/mmnp/20116303
Kubatko, E.J., Westerink, J.J., Dawson, C.: hp discontinuous galerkin methods for advection dominated problems in shallow water flow. Comput. Methods Appl. Mech. Eng. 196(1–3), 437–451 (2006). ISSN 0045–7825. doi:10.1016/j.cma.2006.05.002. http://www.sciencedirect.com/science/article/B6V29-4M1CYTM-1/2/6c45c85d20d17690046881a795b0b04d
Kubatko, E.J., Westerink, J.J., Dawson, C.: Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge–Kutta time discretizations. J. Comput. Phys. 222(2), 832–848 (2007a). doi:10.1016/j.jcp.2006.08.005
Kubatko, E.J., Dawson, C., Westerink, J.J.: Time step restrictions for Runge–Kutta discontinuous Galerkin methods on triangular grids. J. Comput. Phys. 227(23), 9697–9710 (2008). doi:10.1016/j.jcp.2008.07.026
Kubatko, E.J., Bunya, S., Dawson, C., Westerink, J.J., Mirabito, C.: A performance comparison of continuous and discontinuous finite element shallow water models. J. Sci. Comput. 40(1–3), 315–339 (2009). doi:10.1007/s10915-009-9268-2
Kubatko, Ethan J., Westerink, Joannes J., Dawson, Clint: Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge–Kutta time discretizations. J. Comput. Phys. 222(2), 832–848 (2007b). doi:10.1016/j.jcp.2006.08.005
Kubatko, Ethan J., Westerink, Joannes J., Dawson, Clint: hp discontinuous Galerkin methods for advection dominated problems in shallow water flow. Comput. Methods Appl. Mech. Eng. 196(1–3), 437–451 (2006). doi:10.1016/j.cma.2006.05.002
Kuzmin, D.: A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods. J. Comput. Appl. Math. 233(12), 3077–3085 (2010). doi:10.1016/j.cam.2009.05.028
Kuzmin, D.: Slope limiting for discontinuous Galerkin approximations with a possibly non-orthogonal Taylor basis. Int. J. Numer. Methods Fluids 71(9), 1178–1190 (2013). doi:10.1002/fld.3707
Kuzmin, D., Schieweck, F.: A parameter-free smoothness indicator for high-resolution finite element schemes. Central Eur. J. Math. 11(8), 1478–1488 (2013). doi:10.2478/s11533-013-0254-4
Liu, Y., Shu, C.-W., Tadmor, E., Zhang, M.: Central discontinuous Galerkin methods on overlapping cells with a nonoscillatory hierarchical reconstruction. SIAM J. Numer. Anal. 45(6), 2442–2467 (2007). doi:10.1137/060666974. (electronic)
Maday, Y., Kaber, S., Tadmor, E.: Legendre pseudospectral viscosity method for nonlinear conservation-laws. SIAM J. Numer. Anal. 30(2), 321–342 (1993). doi:10.1137/0730016
Meister, A., Ortleb, S., Sonar, Th: Application of spectral filtering to discontinuous Galerkin methods on triangulations. Numer. Methods Partial Differ. Equ. 28(6), 1840–1868 (2012). doi:10.1002/num.20705
Michoski, C., Evans, J.A., Schmitz, P.G., Vasseur, A.: A discontinuous Galerkin method for viscous compressible multifluids. J. Comput. Phys. 229(6), 2249–2266 (2010). doi:10.1016/j.jcp.2009.11.033
Michoski, C., Mirabito, C., Dawson, C., Wirasaet, D., Kubatko, E.J., Westerink, J.J.: Adaptive hierarchic transformations for dynamically \(p\)-enriched slope-limiting over discontinuous Galerkin systems of generalized equations. J. Comput. Phys. 230(22), 8028–8056 (2011). doi:10.1016/j.jcp.2011.07.009
Michoski, C., Mirabito, C., Dawson, C., Wirasaet, D., Kubatko, E.J., Westerink, J.J.: Dynamic p-enrichment schemes for multicomponent reactive flows. Adv. Water Resour. 34(12), 1666–1680 (2011). ISSN 0309–1708. doi:10.1016/j.advwatres.2011.09.001. http://www.sciencedirect.com/science/article/pii/S0309170811001679
Michoski, C., Evans, J.A., Schmitz, P.G.: Discontinuous Galerkin hp-adaptive methods for multiscale chemical reactors i: Quiescent reactors. Preprint (2013)
Osher, S.: Convergence of generalized MUSCL schemes. SIAM J. Numer. Anal. 22(5), 947–961 (1985)
Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. Preprint (2013)
Ruuth, S.J.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Comput. 75(253), 183–207 (2006). doi:10.1090/S0025-5718-05-01772-2. (electronic)
Shu, C.-W., Osher, S.: Efficient implementation of essentially nonoscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)
Tadmor, Eitan, Waagan, Knut: Adaptive spectral viscosity for hyperbolic conservation laws. SIAM J. Sci. Comput. 34(2), A993–A1009 (2012). doi:10.1137/110836456
Thomas, J.W.: Numerical partial differential equations: finite difference methods. In: Texts in Applied Mathematics, vol. 22. Springer, New York (1995). ISBN 0-387-97999-9
Wirasaet, D., Tanaka, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A performance comparison of nodal discontinuous Galerkin methods on triangles and quadrilaterals. Int. J. Numer. Methods Fluids 64(10–12), 1336–1362 (2010). ISSN 0271–2091. doi:10.1002/fld.2376. 15th International Conference on Finite Elements in Flow Problems, Tokyo, Japan, April 01–03, 2009
Xin, J.G., Flaherty, J.E.: Viscous stabilization of discontinuous Galerkin solutions of hyperbolic conservation laws. Appl. Numer. Math. 56(3–4), 444–458 (2006). ISSN 0168–9274. doi:10.1016/j.apnum.2005.08.001. 3rd International Conference on Numerical Solutions of Volterra and Delay Equations, Tempe, AZ, May, 2004
Xing, Y., Shu, C.W.: High-order finite volume weno schemes for the shallow water equations with dry states. Adv. Water Resour. 34(8), 1026–1038 (2011). ISSN 0309–1708. doi:10.1016/j.advwatres.2011.05.008. http://www.sciencedirect.com/science/article/pii/S0309170811000996
Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33(12), 1476–1493 (2010). ISSN 0309–1708. doi:10.1016/j.advwatres.2010.08.005. http://www.sciencedirect.com/science/article/pii/S0309170810001491
Zingan, V., Guermond, J.-L., Morel, J., Popov, B.: Implementation of the entropy viscosity method with the discontinuous Galerkin method. Comput. Methods Appl. Mech. Eng. 253, 479–490 (2013). doi:10.1016/j.cma.2012.08.018
Zingan, V.N.: Discontinuous Galerkin finite element method for the nonlinear hyperbolic problems with entropy-based artificial viscosity stabilization. Dissertation, Texas A&M University (2012)
Acknowledgments
The authors would like to thank Kyle Mandli and Stewart Stafford for helpful comments, insights, and conversation, and to acknowledge the support of the National Science Foundation Grant NSF ACI-1339801.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Michoski, C., Dawson, C., Kubatko, E.J. et al. A Comparison of Artificial Viscosity, Limiters, and Filters, for High Order Discontinuous Galerkin Solutions in Nonlinear Settings. J Sci Comput 66, 406–434 (2016). https://doi.org/10.1007/s10915-015-0027-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-015-0027-2