Abstract
In this paper, we propose a spectral method for the n-dimensional Navier–Stokes equations with non-slip boundary conditions by using the divergence-free base functions. The numerical solutions fulfill the incompressibility and the physical boundary conditions automatically. In particular, we only need to evaluate the unknown coefficients of expansions of arbitrary \(n-1\) components of the velocity. These facts simplify actual computation and numerical analysis, and save computational time essentially. As the mathematical foundation of this new approach, we establish some approximation results, with which we prove the spectral accuracy in space of the suggested algorithm. Numerical results demonstrate its high efficiency and coincide the analysis very well.
Similar content being viewed by others
References
Baker, G.A., Jureidini, W.N., Karakashian, O.A.: Piecewise solenoidal vector fields and the Stokes problem. SIAM J. Numer. Anal. 27, 1466–1485 (1990)
Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Vol. 5, Techniques of Scientific Computing, pp. 209–486. Elsevier, Amsterdam (1997)
Cai, W., Wu, J., Xin, J.: Divergence-free \({\cal H}\)(div)-conforming hierarchical bases for Magentohydrodynamics (MHD). Commun. Math. Stat. 1, 19–35 (2013)
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)
Chorin, A.J.: Numerical solution of the Navier–Stokes equations. J. Comput. Phys. 2, 745–762 (1968)
Chorin, A.J.: The numerical solution of the Navier–Stokes equations for an incompressible fluid. Bull. Am. Math. Soc. 73, 928–931 (1967)
Dubois, F.: Discrete vector potential representation of a divergence-free vector field in three-dimensional domains: numerical analysis of a model problem. SIAM J. Numer. Anal. 27, 1103–1141 (1990)
Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes equations, Lecture Notes in Mathematics, vol. 794. Springer, Berlin (1979)
Gresho, P.M.: On pressure boundary conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Meth. Fluids 7, 1111–1145 (1987)
Guo, B.: A class of difference schemes of two-dimensional viscous fluid flow. Acta Math. Sin. 17, 242–258 (1974)
Guo, B.: Spectral method for Navier–Stokes equations. Sci. Sin. 28A, 1139–1153 (1985)
Guo, B.: Difference Methods for Partial Differential Equations. Science Press, Beijing (1988)
Guo, B.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)
Guo, B., He, L.: Fully discrete Legendre spectral approximation of two-dimensional unsteady incompressible fluid flow in stream function form. SIAM J. Numer. Anal. 35, 146–176 (1998)
Guo, B., Jiao, Y.: Spectral method for Navier–Stokes equations with slip boundary conditions. J. Sci. Comput. 58, 249–274 (2014)
Guo, B., Ma, H.: Combined finite element and pseudospectral method for the two-dimensional evolutionary Navier–Stokes equations. SIAM J. Numer. Anal. 30, 1066–1083 (1993)
Guo, B., Shen, J., Wang, L.: Optimal spectral-Galerkin methods using generalized Jacobi polynomials. J. Sci. Comput. 27, 305–322 (2006)
Guo, B., Shen, J., Wang, L.: Generalized Jacobi polynomials/functions and their applications. Appl. Numer. Math. 59, 1011–1028 (2009)
Guo, B., Sun, T., Zhang, C.: Jacobi and Laguerre quasi-orthogonal approximations and related interpolations. Math. Comput. 82, 413–441 (2013)
Guzman, J., Neilan, M.: Conforming and divergence free Stokes elements on general triangular meshes. Comput. Math. (2014). doi:10.1090/S0025-5718-2013-02753-6
Karakashian, O., Katsaounis, T.: Numerical simulation of incompressible fluid flow using locally solenoidal elements. Comput. Math. Appl. 51, 1551–1570 (2006)
Kuo, P.: Numerical methods for incompressible viscous flow. Sci. Sin. 20, 287–304 (1977)
Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach, New York (1969)
Lions, J.L.: Quèlques Méthodes de Résolution des Problèms aux Limités Non Linéaires. Dunod, Paris (1969)
Maday, Y., Quarteroni, A.: Spectral and pseudospectral approximation of the Navier–Stokes equations. Cont. Math. 19, 761–780 (1982)
Sun, T., Guo, B.: Generalized Jacobi approximation in multiple dimensions and its applications. J. Sci. Comput. 55, 327–350 (2013)
Téman, R.: Sur l’approximation de la solution des equations de Navier–Stokes par la méthode des fractionnarires II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)
Téman, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1977)
Zhang, S.: A new fanily of stable mixed finite elements for the 3D Stokes equations. Math. Comput. 74, 543–554 (2004)
Zhang, S.: A family of \(Q_{k+1, k}\times Q_{k, k+1}\) divergence-free finite elements of rectangular grids. SIAM J. Numer. Anal. 47, 2090–2107 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
Ben-yu Guo: The work of this author is supported in part by NSF of China No. 11171227, Fund for Doctoral Authority of China No. 20123127110001, Fund for E-institute of Shanghai Universities No. E03004, and Leading Academic Discipline Project of Shanghai Municipal Education Commission No. J50101.
Yu-jian Jiao: The work of this author is supported in part by NSF of China Nos. 11171227 and 11371123, Fund for Doctoral Authority of China No. 20123127110001, and NSF of Shanghai No. 13ZR1429800.
Rights and permissions
About this article
Cite this article
Guo, By., Jiao, Yj. Spectral Method For Navier–Stokes Equations With Non-slip Boundary Conditions By Using Divergence-Free Base Functions. J Sci Comput 66, 1077–1101 (2016). https://doi.org/10.1007/s10915-015-0054-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-015-0054-z
Keywords
- Spectral method using divergence-free base functions
- Navier–Stokes equations
- Non-slip boundary conditions