Skip to main content
Log in

Spectral Method For Navier–Stokes Equations With Non-slip Boundary Conditions By Using Divergence-Free Base Functions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a spectral method for the n-dimensional Navier–Stokes equations with non-slip boundary conditions by using the divergence-free base functions. The numerical solutions fulfill the incompressibility and the physical boundary conditions automatically. In particular, we only need to evaluate the unknown coefficients of expansions of arbitrary \(n-1\) components of the velocity. These facts simplify actual computation and numerical analysis, and save computational time essentially. As the mathematical foundation of this new approach, we establish some approximation results, with which we prove the spectral accuracy in space of the suggested algorithm. Numerical results demonstrate its high efficiency and coincide the analysis very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, G.A., Jureidini, W.N., Karakashian, O.A.: Piecewise solenoidal vector fields and the Stokes problem. SIAM J. Numer. Anal. 27, 1466–1485 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardi, C., Maday, Y.: Spectral methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, Vol. 5, Techniques of Scientific Computing, pp. 209–486. Elsevier, Amsterdam (1997)

    Google Scholar 

  3. Cai, W., Wu, J., Xin, J.: Divergence-free \({\cal H}\)(div)-conforming hierarchical bases for Magentohydrodynamics (MHD). Commun. Math. Stat. 1, 19–35 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Berlin (2007)

    Google Scholar 

  5. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. J. Comput. Phys. 2, 745–762 (1968)

    MathSciNet  Google Scholar 

  6. Chorin, A.J.: The numerical solution of the Navier–Stokes equations for an incompressible fluid. Bull. Am. Math. Soc. 73, 928–931 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dubois, F.: Discrete vector potential representation of a divergence-free vector field in three-dimensional domains: numerical analysis of a model problem. SIAM J. Numer. Anal. 27, 1103–1141 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  8. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier–Stokes equations, Lecture Notes in Mathematics, vol. 794. Springer, Berlin (1979)

    Book  Google Scholar 

  9. Gresho, P.M.: On pressure boundary conditions for the incompressible Navier–Stokes equations. Int. J. Numer. Meth. Fluids 7, 1111–1145 (1987)

    Article  MATH  Google Scholar 

  10. Guo, B.: A class of difference schemes of two-dimensional viscous fluid flow. Acta Math. Sin. 17, 242–258 (1974)

    MATH  Google Scholar 

  11. Guo, B.: Spectral method for Navier–Stokes equations. Sci. Sin. 28A, 1139–1153 (1985)

    Google Scholar 

  12. Guo, B.: Difference Methods for Partial Differential Equations. Science Press, Beijing (1988)

    Google Scholar 

  13. Guo, B.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  14. Guo, B., He, L.: Fully discrete Legendre spectral approximation of two-dimensional unsteady incompressible fluid flow in stream function form. SIAM J. Numer. Anal. 35, 146–176 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, B., Jiao, Y.: Spectral method for Navier–Stokes equations with slip boundary conditions. J. Sci. Comput. 58, 249–274 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo, B., Ma, H.: Combined finite element and pseudospectral method for the two-dimensional evolutionary Navier–Stokes equations. SIAM J. Numer. Anal. 30, 1066–1083 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, B., Shen, J., Wang, L.: Optimal spectral-Galerkin methods using generalized Jacobi polynomials. J. Sci. Comput. 27, 305–322 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, B., Shen, J., Wang, L.: Generalized Jacobi polynomials/functions and their applications. Appl. Numer. Math. 59, 1011–1028 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, B., Sun, T., Zhang, C.: Jacobi and Laguerre quasi-orthogonal approximations and related interpolations. Math. Comput. 82, 413–441 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Guzman, J., Neilan, M.: Conforming and divergence free Stokes elements on general triangular meshes. Comput. Math. (2014). doi:10.1090/S0025-5718-2013-02753-6

    Google Scholar 

  21. Karakashian, O., Katsaounis, T.: Numerical simulation of incompressible fluid flow using locally solenoidal elements. Comput. Math. Appl. 51, 1551–1570 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kuo, P.: Numerical methods for incompressible viscous flow. Sci. Sin. 20, 287–304 (1977)

    MATH  Google Scholar 

  23. Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach, New York (1969)

    MATH  Google Scholar 

  24. Lions, J.L.: Quèlques Méthodes de Résolution des Problèms aux Limités Non Linéaires. Dunod, Paris (1969)

    Google Scholar 

  25. Maday, Y., Quarteroni, A.: Spectral and pseudospectral approximation of the Navier–Stokes equations. Cont. Math. 19, 761–780 (1982)

    MathSciNet  MATH  Google Scholar 

  26. Sun, T., Guo, B.: Generalized Jacobi approximation in multiple dimensions and its applications. J. Sci. Comput. 55, 327–350 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Téman, R.: Sur l’approximation de la solution des equations de Navier–Stokes par la méthode des fractionnarires II. Arch. Ration. Mech. Anal. 33, 377–385 (1969)

    Google Scholar 

  28. Téman, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1977)

    Google Scholar 

  29. Zhang, S.: A new fanily of stable mixed finite elements for the 3D Stokes equations. Math. Comput. 74, 543–554 (2004)

    Article  Google Scholar 

  30. Zhang, S.: A family of \(Q_{k+1, k}\times Q_{k, k+1}\) divergence-free finite elements of rectangular grids. SIAM J. Numer. Anal. 47, 2090–2107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben-yu Guo.

Additional information

Ben-yu Guo: The work of this author is supported in part by NSF of China No. 11171227, Fund for Doctoral Authority of China No. 20123127110001, Fund for E-institute of Shanghai Universities No. E03004, and Leading Academic Discipline Project of Shanghai Municipal Education Commission No. J50101.

Yu-jian Jiao: The work of this author is supported in part by NSF of China Nos. 11171227 and 11371123, Fund for Doctoral Authority of China No. 20123127110001, and NSF of Shanghai No. 13ZR1429800.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, By., Jiao, Yj. Spectral Method For Navier–Stokes Equations With Non-slip Boundary Conditions By Using Divergence-Free Base Functions. J Sci Comput 66, 1077–1101 (2016). https://doi.org/10.1007/s10915-015-0054-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0054-z

Keywords

Mathematics Subject Classification

Navigation