Skip to main content
Log in

Numerical Algorithms with High Spatial Accuracy for the Fourth-Order Fractional Sub-Diffusion Equations with the First Dirichlet Boundary Conditions

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a compact algorithm for the fourth-order fractional sub-diffusion equations with first Dirichlet boundary conditions, which depict wave propagation in intense laser beams, is investigated. Combining the average operator for the spatial fourth-order derivative, the L1 formula is applied to approximate the temporal Caputo fractional derivative. A novel technique is introduced to deal with the first Dirichlet boundary conditions. Using mathematical induction method, we prove that the presented difference scheme is unconditionally stable and convergent by the energy method. The convergence order is \(O(\tau ^{2-\alpha }+h^4)\) in \(L_2\)-norm. The outline for the two-dimensional problem is also considered. Finally, some numerical examples are provided to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  2. Hilfer, R.: Application of fractional calculus in physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  3. Klages, R., Radons, G., Sokolov, I.M.: Anomalous Transport: Foundations and Applications. Wiley, Weinheim (2008)

    Book  Google Scholar 

  4. Mainardi, F., Raberto, M., Gorenflo, R., Scalas, E.: Fractional calculus and continuous-time finance II: the waiting-time distribution. Physica. A. 287, 468–481 (2000)

    Article  Google Scholar 

  5. Benson, D.A., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp. Porous Media 42, 211–240 (2001)

    Article  MathSciNet  Google Scholar 

  6. Mainardi, F.: Some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien (1997)

    Google Scholar 

  7. Das, S.: Functional Fractional Calculus. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  8. Tomovski, Ž., Sandev, T.: Exact solutions for fractional diffusion equation in a bounded domain with different boundary conditions. Nonlinear Dynam. 71, 671–683 (2013)

    Article  MathSciNet  Google Scholar 

  9. Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yuste, S.B., Acedo, L.: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42, 1862–1874 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chen, C.M., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 227, 886–897 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 46, 1079–1095 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)

    Article  MathSciNet  Google Scholar 

  15. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ren, J.C., Sun, Z.Z.: Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with Neumann boundary conditions. J. Sci. Comput. 56, 381–408 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ren, J.C., Sun, Z.Z., Zhao, X.: Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 232, 456–467 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhao, X., Sun, Z.Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6061–6074 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, Y.N., Sun, Z.Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230, 8713–8728 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximations for the fractional Fokker-Planck equation. Appl. Math. Model. 33, 256–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin, X., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gao, G., Sun, Z.Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230, 586–595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, Y.N., Sun, Z.Z., Wu, H.W.: Error estimate of Crank-Nicolson-type difference schemes for the subdiffusion equation. SIAM J Numer. Anal. 49, 2302–2322 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, C.M., Liu, F., Anh, V., Turner, I.: Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equations. SIAM J. Sci. Comput. 32, 1740–1760 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gao, G., Sun, Z.Z., Zhang, H.: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications. J. Comput. Phys. 259, 33–50 (2014)

    Article  MathSciNet  Google Scholar 

  27. Li, C.P., Ding, H.F.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38, 3802–3821 (2014)

    Article  MathSciNet  Google Scholar 

  28. Wang, Z., Vong, S.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1–15 (2014)

    Article  MathSciNet  Google Scholar 

  29. Myers, T.G., Charpin, J.P.F.: A mathematical model for atmospheric ice accretion and water flow on a cold surface. Int. J. Heat Mass Transf. 47(25), 5483–5500 (2004)

    Article  MATH  Google Scholar 

  30. Myers, T.G., Charpin, J.P.F., Chapman, S.J.: The flow and solidification of a thin fluid film on an arbitrary three-dimensional surface. Phys. Fluids. 14(8), 2788–2803 (2002)

    Article  MathSciNet  Google Scholar 

  31. Halpern, D., Jensen, O.E., Grotberg, J.B.: A theoretical study of surfactant and liquid delivery into the lung. J. Appl. Physiol. 85, 333–352 (1998)

    Google Scholar 

  32. Memoli, F., Sapiro, G., Thompson, P.: Implicit brain imaging. Human Brain Map. 23, 179–188 (2004)

    Google Scholar 

  33. Toga, A.: Brain Warping. Academic Press, New York (1998)

    Google Scholar 

  34. Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. ACM Trans. Graph 23, 284–293 (2004)

    Article  Google Scholar 

  35. Karpman, V.I.: Stabilization of soliton instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations. Phys. Rev. E. 53(2), 1336–1339 (1996)

    Article  Google Scholar 

  36. Karpman, V.I., Shagalov, A.G.: Stability of soliton described by nonlinear Schrödinger-type equations with higher order dispersion. Phys. D. 144, 194–210 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Agrawal, Om P.: A general solution for a fourth-order fractional diffusion-wave equation in a bounded domain. Comput. Struct. 79, 1497–1501 (2001)

    Article  Google Scholar 

  38. Jafari, H., Dehghan, M., Sayevand, K.: Solving a Fourth-Order Fractional Diffusion-Wave Equation in a Bounded Domain by Decomposition Method. Wiley InterScience, New York (2007)

    Google Scholar 

  39. Golbabai, A., Sayevand, K.: Fractional calculus-A new approach to the analysis of generalized fourth-order diffusion-wave equations. Appl. Math. Comput. 61, 2227–2231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu, Y., Fang, Z.C., Li, H., He, S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703–717 (2014)

    Article  MathSciNet  Google Scholar 

  41. Guo, J., Li, C.P., Ding, H.F.: Finite difference methods for time subdiffusion equation with space fourth-order. Commun. Appl. Math. Comput. 28, 96–108 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Hu, X.L., Zhang, L.M.: On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems. Appl. Math. Comput. 218, 5019–5034 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hu, X.L., Zhang, L.M.: A new implicit compact difference scheme for the fourth-order fractional diffusion-wave system. Int. J. Comput. Math. 91, 2215–2231 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximations for the fractional Fokker-Planck equation. Appl. Math. Model. 33, 256–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Liao, H.L., Sun, Z.Z.: Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations. Numer. Methods Partial Differ. Equ. 26, 37–60 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Gao, G., Sun, Z.Z.: Compact difference schemes for heat equation with Neumann boundary conditions (II). Numer. Methods Partial Differ. Equ. 29, 1459–1486 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ji, C., Sun, Z.Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. doi:10.1007/s10915-014-9956-4

Download references

Acknowledgments

We would like to express our gratitude to the editor and the reviewers for their many valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-zhong Sun.

Additional information

The research is supported by National Natural Science Foundation of China (No. 11271068).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Cc., Sun, Zz. & Hao, Zp. Numerical Algorithms with High Spatial Accuracy for the Fourth-Order Fractional Sub-Diffusion Equations with the First Dirichlet Boundary Conditions. J Sci Comput 66, 1148–1174 (2016). https://doi.org/10.1007/s10915-015-0059-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0059-7

Keywords