Abstract
We study a posteriori error estimates for convection–diffusion–reaction problems with possibly dominating convection or reaction and inhomogeneous boundary conditions. For the conforming FEM discretisation with streamline diffusion stabilisation, we derive reliable and efficient error estimators based on the reconstruction of equilibrated fluxes in an admissible discrete subspace of \({H({{\mathrm{div}}},\Omega )}\). Error estimators of this type have become popular recently since they provide guaranteed error bounds without further unknown constants. The estimators can be improved significantly by some postprocessing and divergence correction technique. For an extension of the energy norm by a dual norm of the convection part of the differential operator, robustness of the error estimator with respect to the coefficients of the problem is achieved. Numerical benchmarks illustrate the good performance of the error estimators for singularly perturbed problems, in particular with dominating convection.








Similar content being viewed by others
References
Ainsworth, M., Allendes, A., Barrenechea, G.R., Rankin, R.: Fully computable a posteriori error bounds for stabilised FEM approximations of convection–reaction–diffusion problems in three dimensions. Int. J. Numer. Methods Fluids 73(9), 765–790 (2013)
Brenner, S.C., Carstensen, C.: Finite Element Methods. Wiley, London (2004)
Bartels, S., Carstensen, C., Dolzmann, G.: Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis. Numer. Math. 99(1), 1–24 (2004)
Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen 22(4), 751–756 (2003)
Braess, D., Schöberl, J.: Equilibrated residual error estimator for edge elements. Math. Comput. 77(262), 651–672 (2008)
Carstensen, C., Eigel, M., Hoppe, R.H.W., Löbhard, C.: A review of unified a posteriori finite element error control. Numer. Math. Theory Methods Appl. 5(4), 509–558 (2012)
Cheddadi, I., Fučík, R., Prieto, M.I., Vohralík, M.: Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems. Math. Model. Numer. Anal. 43(5), 867–888 (2009)
Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. North-Holland Publishing Co., Amsterdam, 1978. Studies in Mathematics and its Applications, vol. 4
Carstensen, C., Merdon, C.: Estimator competition for Poisson problems. J. Comput. Math. 28(3), 309–330 (2010). (electronic)
Carstensen, C., Merdon, C.: Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem. J. Comput. Appl. Math. 249, 74–94 (2013)
Carstensen, C., Merdon, C.: Effective postprocessing for equilibration a posteriori error estimators. Numer. Math. 123(3), 425–459 (2013)
Carstensen, C., Merdon, C.: Refined fully explicit a posteriori residual-based error control. SIAM J. Numer. Anal. 52(4), 1709–1728 (2014)
Destuynder, P., Métivet, B.: Explicit error bounds in a conforming finite element method. Math. Comput. 68(228), 1379–1396 (1999)
Eriksson, K., Johnson, C.: Adaptive streamline diffusion finite element methods for stationary convection–diffusion problems. Math. Comput. 60(201), 167–188 (1993)
Ern, A., Stephansen, A.F., Vohralík, M.: Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection–diffusion–reaction problems. J. Comput. Appl. Math. 234(1), 114–130 (2010)
Hughes, T.J.R., Brooks, A.: A multidimensional upwind scheme with no crosswind diffusion. In: Finite Element Methods for Convection Dominated Flows (Papers, Winter Ann. Meeting Am. Soc. Mech. Eng., New York, 1979), vol. 34 of AMD, pp. 19–35. Am. Soc. Mech. Eng., New York (1979)
Hughes, T.J.R., Mallet, M., Akira, M.: A new finite element formulation for computational fluid dynamics. II. Beyond SUPG. Comput. Methods Appl. Mech. Eng. 54(3), 341–355 (1986)
John, V., Novo, J.: A robust SUPG norm a posteriori error estimator for stationary convection–diffusion equations. Math. Comput. Simul. 255(1), 289–305 (2013)
Johnson, C., Nävert, U., Pitkäranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 45(1–3), 285–312 (1984)
Johnson, C.: Adaptive finite element methods for diffusion and convection problems. Comput. Methods Appl. Mech. Eng. 82(1–3), 301–322 (1990)
John, Volker: A numerical study of a posteriori error estimators for convection–diffusion equations. Comput. Methods Appl. Mech. Eng. 190(5–7), 757–781 (2000)
Knabner, P., Angermann, L.: Numerical Methods for Elliptic and Parabolic Partial Differential Equations, Texts in Applied Mathematics, vol. 44. Springer, New York (2003)
Laugesen, R.S., Siudeja, B.A.: Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality. J. Differ. Equ. 249(1), 118–135 (2010)
Luce, R., Wohlmuth, B.I.: A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal. 42(4), 1394–1414 (2004). (electronic)
Merdon, C.: Aspects of guaranteed error control in computation for partial differential equations. Ph.D. thesis (2013)
Papastavrou, A., Verfürth, R.: A posteriori error estimators for stationary convection–diffusion problems: a computational comparison. Comput. Methods Appl. Mech. Eng. 189(2), 449–462 (2000)
Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286–292 (1960)
Repin, S.: A Posteriori Estimates for Partial Differential Equations. Radon Series on Computational and Applied Mathematics, vol. 4. Walter de Gruyter GmbH & Co. KG, Berlin (2008)
Repin, S., Sauter, S.: Functional a posteriori estimates for the reaction–diffusion problem. C. R. Math. Acad. Sci. Paris 343(5), 349–354 (2006)
Sangalli, G.: A uniform analysis of nonsymmetric and coercive linear operators. SIAM J. Math. Anal. 36(6), 2033–2048 (2005). (electronic)
Stevenson, R.: The uniform saturation property for a singularly perturbed reaction–diffusion equation. Numer. Math. 101, 355–379 (2005). (electronic)
Verfürth, R.: A posteriori error estimators for convection–diffusion equations. Numer. Math. 80(4), 641–663 (1998)
Verfürth, R.: Robust a posteriori error estimates for stationary convection–diffusion equations. SIAM J. Numer. Anal. 43(4), 1766–1782 (2005). (electronic)
Verfürth, R.: A note on constant-free a posteriori error estimates. SIAM J. Numer. Anal. 47(4), 3180–3194 (2009)
Vohralík, M.: A posteriori error estimates for lowest-order mixed finite element discretizations of convection–diffusion–reaction equations. SIAM J. Numer. Anal. 45(4), 1570–1599 (2007). (electronic)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Eigel, M., Merdon, C. Equilibration a Posteriori Error Estimation for Convection–Diffusion–Reaction Problems. J Sci Comput 67, 747–768 (2016). https://doi.org/10.1007/s10915-015-0108-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-015-0108-2
Keywords
- A posteriori
- Error analysis
- Finite element method
- Equilibrated
- Convection dominated
- Adaptivity
- Inhomogeneous Dirichlet
- Augmented norm