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STOCHASTIC C-STABILITY AND B-CONSISTENCY OF

EXPLICIT AND IMPLICIT EULER-TYPE SCHEMES

WOLF-JÜRGEN BEYN, ELENA ISAAK, AND RAPHAEL KRUSE

Abstract. This paper is concerned with the numerical approximation of sto-
chastic ordinary differential equations, which satisfy a global monotonicity con-
dition. This condition includes several equations with super-linearly growing
drift and diffusion coefficient functions such as the stochastic Ginzburg-Landau
equation and the 3/2-volatility model from mathematical finance. Our analysis
of the mean-square error of convergence is based on a suitable generalization
of the notions of C-stability and B-consistency known from deterministic nu-
merical analysis for stiff ordinary differential equations. An important feature
of our stability concept is that it does not rely on the availability of higher
moment bounds of the numerical one-step scheme.

While the convergence theorem is derived in a somewhat more abstract
framework, this paper also contains two more concrete examples of stochas-
tically C-stable numerical one-step schemes: the split-step backward Euler
method from Higham et al. (2002) and a newly proposed explicit variant of
the Euler-Maruyama scheme, the so called projected Euler-Maruyama method.
For both methods the optimal rate of strong convergence is proven theoreti-
cally and verified in a series of numerical experiments.

1. Introduction

Initiated by the papers [7] and [8] the field of numerical analysis for stochas-

tic ordinary differential equations (SODEs) with super-linearly growing coefficient

functions has seen a considerable progress, especially over the last couple of years.

For instance, we refer to [10, 9, 12, 16, 21, 25] and the references therein.

The starting point of this article is the following observation: There exist strongly

convergent numerical schemes, whose one-step maps satisfy suitable Lipschitz-type

conditions, although the underlying stochastic differential equation has non-globally

Lipschitz continuous coefficient functions. For the numerical approximation of stiff

deterministic ODEs this observation has been formalized in the notion of C-stability,

see for example [2, Definition 2.1.3] and [22, Chap. 8.4]. A related result is also

found in [5, Prop. 15.2].

In this paper we present a generalization of this notion to the stochastic situ-

ation. Together with its counterpart, the notion of B-consistency, we will show

that the error analysis of stochastically C-stable numerical methods can be simpli-

fied significantly compared to existing approaches in the literature. In particular, it

turns out that it is not necessary to study higher moment estimates of the numerical

scheme nor to consider their continuous time extensions.
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We apply this more abstract framework to study the strong error of conver-

gence for the numerical discretization of SODEs under the global monotonicity

condition (see (3)). This condition includes several examples of SODEs with su-

perlinearly growing drift and diffusion coefficient functions, for which the explicit

Euler-Maruyama method is known to be divergent, see [11]. However, several ex-

plicit and implicit variants of the Euler-Maruyama method have been developed and

analyzed in recent papers on this topic. For instance, we refer to [16] for the strong

error analysis of the backward Euler method, and to [21, 25] for a corresponding

result of the explicit tamed Euler method. Further, in [9] strong convergence rates

are derived for a stopped-tamed Euler-Maruyama method applied to SODEs which

lie beyond the global monotonicity condition.

In this paper we work with the following notion of strong convergence: We say

that a numerical scheme converges strongly with order γ to the exact solution

X : [0, T ]× Ω → R
d if there exists a constant C independent of the temporal step

size h such that

max
n∈{1,...,N}

‖X(tn)−Xh(tn)‖L2(Ω;Rd) ≤ C|h|γ .(1)

Here, Xh : {t0, t1, . . . , tN}×Ω → R
d denotes the grid function generated by the nu-

merical scheme. Let us remark that several of the above mentioned papers consider

stronger notions of strong convergence, where, for example, the maximum occurs

inside the L2-norm or the norm in Lp(Ω;Rd) with p > 2 is considered instead of the

L2-norm. Our choice of (1) is explained by the fact that our proof of the stability

lemma (see Lemma 3.5), which plays a central role in our approach, relies on the

orthogonality of the conditional expectation with respect to the norm in L2.

In order to demonstrate the usefulness of our abstract results we present two

more concrete examples of stochastically C-stable numerical schemes: First we

are concerned with the split-step backward Euler method (SSBE) from [7], which is

shown to be strongly convergent of order γ = 1
2 in Theorem 5.8. Second, we propose

a new explicit scheme, the projected Euler-Maruyama method (PEM), which turns

out to be, in general, computationally less expensive then the implicit SSBE scheme.

In Theorem 6.7 we verify that the PEM method is also strongly convergent of order
1
2 .

In our numerical experiments in Section 7 both methods perform equally well

in terms of the experimental strong errors, which therefore indicates to favour the

explicit PEM method due to its simpler implementation. However, this only holds

true in the non-stiff case. As for deterministic ODEs, stiff problems may require an

impractical small step size for an explicit numerical method while implicit schemes

already give more useful results for larger step sizes, therefore reducing the overall

computational cost. This is relevant if, for instance, the numerical one-step method

is used for the time integration of a parabolic stochastic partial differential equation.

Although we apply techniques from the numerical analysis of stiff equations in

our error analyis we leave this issue to future research and concentrate here on

non-stiff problems. In this context we also refer to [12] for a detailed comparison

between implicit numerical methods and a further purely explicit variant of the

Euler-Maruyama method, the tamed Euler method, which is considered in several

of the above mentioned papers.
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Let us briefly highlight two results in the literature, which are closely related to

our approach from a methodological point of view: In [26] the authors investigate

a family of one-leg theta methods for the discretization of SODEs under a one-

sided Lipschitz condition on the drift and a global Lipschitz bound on the diffusion

coefficient function. Hereby, they make use of the related notion of B-convergence.

The second paper [25] presents a fundamental mean square convergence theorem

for the discretization of SODEs under the global monotonicity condition. This

theorem imposes a similar concept of the local truncation error as our notion of

B-consistency. However, in the proof of the theorem the authors relate the global

error at time ti to the error at time ti−1 by one time step of the exact solution.

Proceeding in this way one cannot benefit from the global Lipschitz properties of

the numerical method.

The remainder of this paper is organized as follows: The following section con-

tains a detailed description of the class of stochastic ordinary differential equations,

whose solutions we want to approximate. Further, we state our main assumptions

and present the numerical schemes, which are analyzed in the subsequent sections.

In Section 3 we develop our notions of stochastic C-stability and B-consistency

in a somewhat more abstract framework. Then we prove the already mentioned

stability lemma, from which we easily deduce our strong convergence theorem for

C-stable numerical methods.

In Section 4 we briefly summarize some results on the solvability of nonlinear

equations, which are needed for the error analysis of the SSBE method. In Sec-

tions 5 and 6 we verify that the split-step backward Euler scheme and the projected

Euler-Maruyama method are stochastically C-stable and B-consistent, and, hence,

strongly convergent. In Section 7 we present some numerical experiments which

illustrate our theoretical results for the discretization of the stochastic Ginzburg-

Landau equation and for the financial 3/2-volatility model.

2. Problem description and the numerical methods

In this section we introduce the class of stochastic differential equations, which

we aim to discretize. Further, we state our main assumptions and the numerical

methods, which we study in the remainder of this paper.

Let d,m ∈ N, T ∈ (0,∞), and (Ω,F , (Ft)t∈[0,T ],P) be a filtered probability

space satisfying the usual conditions. We consider the solution X : [0, T ]×Ω → R
d

to the SODE

dX(t) = f(t,X(t)) dt+

m
∑

r=1

gr(t,X(t)) dW r(t), t ∈ [0, T ],

X(0) = X0.

(2)

Here f : [0, T ]×R
d → R

d stands for the drift coefficient function, while gr : [0, T ]×

R
d → R

d, r = 1, . . . ,m, are the diffusion coefficient functions. By W r : [0, T ] ×

Ω → R, r = 1, . . . ,m, we denote an independent family of real-valued standard

(Ft)t∈[0,T ]-Brownian motions on (Ω,F ,P). For a sufficiently large p ∈ [2,∞) the

initial condition X0 is assumed to be an element of the space Lp(Ω,F0,P;Rd).

By 〈·, ·〉 and | · | we denote the Euclidean inner product and the Euclidean norm

on R
d, respectively. Throughout this paper we impose the following conditions on

the drift and the diffusion coefficient functions. Note that the strong convergence
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result for the SSBE method in Theorem 5.8 requires a more restrictive lower bound

for the parameter η appearing in (3).

Assumption 2.1. The mappings f : [0, T ]× R
d → R

d and gr : [0, T ]× R
d → R

d,

r = 1, . . . ,m, are continuous. Furthermore, there exist a positive constant L and a

parameter value η ∈ (12 ,∞) with

〈

f(t, x1)− f(t, x2), x1 − x2

〉

+ η

m
∑

r=1

∣

∣gr(t, x1)− gr(t, x2)
∣

∣

2
≤ L|x1 − x2|

2(3)

for all t ∈ [0, T ] and x1, x2 ∈ R
d. In addition, there exists a constant q ∈ (1,∞)

such that for every r = 1, . . . ,m it holds

|f(t, x)| ∨ |gr(t, x)| ≤ L
(

1 + |x|q
)

,(4)

|f(t1, x)− f(t2, x)| ∨ |gr(t1, x)− gr(t2, x)| ≤ L
(

1 + |x|q
)

|t1 − t2|
1
2 ,

(5)

|f(t, x1)− f(t, x2)| ∨ |gr(t, x1)− gr(t, x2)| ≤ L
(

1 + |x1|
q−1 + |x2|

q−1
)

|x1 − x2|,

(6)

for all t, t1, t2 ∈ [0, T ] and x, x1, x2 ∈ R
d.

The assumption (3) is called global monotonicity condition. We exclude the case

q = 1, since this coincides with the well-known global Lipschitz case studied in [13,

17]. In Section 7 we present two more concrete SODEs, which fulfill Assumption 2.1.

Before we describe the numerical schemes we remark that Assumption 2.1 is also

sufficient to ensure the existence of a unique solution to (2), see [14], [15, Chap. 2.3]

or [20, Chap. 3]. By this we understand an almost surely continuous and (Ft)t∈[0,T ]-

adapted stochastic process X : [0, T ]× Ω → R
d which satisfies P-almost surely the

integral equation

X(t) = X0 +

∫ t

0

f(s,X(s)) ds+

m
∑

r=1

∫ t

0

gr(s,X(s)) dW r(s)(7)

for all t ∈ [0, T ]. In addition, if there exist C ∈ (0,∞) and p ∈ [2,∞) such that

〈

f(t, x), x
〉

+
p− 1

2

m
∑

r=1

∣

∣gr(t, x)
∣

∣

2
≤ C

(

1 + |x|2
)

(8)

for all x ∈ R
d, t ∈ [0, T ], then the exact solution has a finite p-th moment, that is

sup
t∈[0,T ]

∥

∥X(t)
∥

∥

Lp(Ω;Rd)
< ∞.(9)

For a proof we refer, for instance, to [15, Chap. 2.4]. The condition (8) is called

global coercivity condition.

For the formulation of the numerical methods we introduce the following ter-

minology: For N ∈ N we say that h = (h1, . . . , hN ) ∈ (0, T ]N is a vector of

(deterministic) step sizes if
∑N

i=1 hi = T . Every vector of step sizes h gives rise to

a set of temporal grid points Th, which is given by

Th :=
{

tn :=
n
∑

i=1

hi : n = 0, . . . , N
}

.

For short we write |h| := maxi∈{1,...,N} hi for the maximal step size in h.

The aim of this paper is to show that the following two schemes are examples of

stochastically C-stable numerical methods.
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Example 2.2. Consider the so called split-step backward Euler method (SSBE)

studied in [7]. For its formulation let h = (h1, . . . , hN ) be a vector of step sizes.

Then the SSBE method is given by setting XSSBE
h (0) = X0 and by the recursion

X
SSBE

h (ti) = XSSBE
h (ti−1) + hif(ti, X

SSBE

h (ti)),

XSSBE
h (ti) = X

SSBE

h (ti) +
m
∑

r=1

gr(ti, X
SSBE

h (ti))
(

W r(ti)−W r(ti−1)
)

,
(10)

for every i = 1, . . . , N . It is shown in Section 5 that the SSBE scheme is a well-

defined stochastic one-step method under Assumption 2.1 and that it is strongly

convergent of order γ = 1
2 , see Theorem 5.8.

Let us note that we evaluate the diffusion coefficient functions gr at time ti in

the i-th step of the SSBE method. This is somewhat unusual when compared to

the definition of the backward Euler scheme in [13, Chap. 12], where gr is evaluated

at ti−1 instead. The reason for this slight modification lies in condition (3), which

is applied to f and gr, r = 1, . . . ,m, simultaneously at the same point t in time.

Compare also with the inequality (21) further below. It helps to avoid some tech-

nical issues if we already take this relationship into consideration in the definition

of the numerical scheme.

Example 2.3. Another example of a stochastically C-stable scheme is the following

explicit variant of the Euler-Maruyama method, which we term projected Euler-

Maruyama method (PEM). It consists of the standard Euler-Maruyama method

and a projection onto a ball in R
d whose radius is expanding with a negative power

of the step size.

To be more precise, let h ∈ (0, 1]N be an arbitrary vector of step sizes. The

parameter value α ∈ (0, 1] is chosen to be α = 1
2(q−1) in dependence on the growth

rate q appearing in Assumption 2.1. Then, the PEM method is given by the

recursion

X
PEM

h (ti) := min
(

1, h−α
i

∣

∣XPEM
h (ti−1)

∣

∣

−1)
XPEM

h (ti−1),

XPEM
h (ti) := X

PEM

h (ti) + hif(ti−1, X
PEM

h (ti))

+

m
∑

r=1

gr(ti−1, X
PEM

h (ti))
(

W r(ti)−W r(ti−1)
)

, for 1 ≤ i ≤ N,

(11)

where XPEM
h (0) := X0. The strong error analysis of the PEM method is carried

out in Section 6.

To the best of our knowledge the PEM method for stochastic equations is new to

the literature. Its definition is inspired by a truncation procedure, which plays an

important role in the proof of [15, Chap. 2, Theorem 3.4]. For deterministic ODEs

projection methods appear in geometric integration, see [4]. After the first preprint

of this paper has appeared on arxiv.org the asymptotic stability and integrability

property of a variant of the PEM method (11) is studied in [24] using Lyapunov

function techniques.

3. An abstract convergence theorem

This section contains a detailed introduction to our notions of stochastic C-

stability and B-consistency in a somewhat more abstract framework. Then we state
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our strong convergence theorem, whose proof turns out to be a direct application

of the stability Lemma 3.5.

We begin by introducing some additional notation. By h ∈ (0, T ] we denote an

upper step size bound and we define the set T := T(h) ⊂ [0, T )× (0, h] to be

T :=
{

(t, δ) ∈ [0, T )× (0, h] : t+ δ ≤ T
}

.

Further, for a given vector of step sizes h ∈ (0, h]N we denote by G2(Th) the space

of all adapted and square integrable grid functions, that is

G2(Th) :=
{

Z : Th × Ω → R
d : Z(tn) ∈ L2(Ω,Ftn ,P;Rd) for all n = 0, 1, . . . , N

}

.

Our abstract class of stochastic one-step methods is defined as follows.

Definition 3.1. Let h ∈ (0, T ] be an upper step size bound and Ψ: Rd×T×Ω → R
d

be a mapping satisfying the following measurability and integrability condition: For

every (t, δ) ∈ T and Z ∈ L2(Ω,Ft,P;Rd) it holds

Ψ(Z, t, δ) ∈ L2(Ω,Ft+δ,P;Rd).(12)

Then, for every vector of step sizes h = (h1, . . . , hN) ∈ (0, h]N , N ∈ N, we say

that a grid function Xh ∈ G2(Th) is generated by the stochastic one-step method

(Ψ, h, ξ) with initial condition ξ ∈ L2(Ω,F0,P;Rd) if

Xh(ti) = Ψ(Xh(ti−1), ti−1, hi), 1 ≤ i ≤ N,

Xh(t0) = ξ.
(13)

We call Ψ the one-step map of the method.

Next, we present our definition of stability for stochastic one-step methods. It

is a suitable generalization of the notion of C-stability from [2, Definition 2.1.3]

and has been used in the context of numerical approximation of stiff differential

equations. We also refer to [5, Prop. 15.2] and to [22, Chap. 8.4] for a more recent

exposition.

Definition 3.2. A stochastic one-step method (Ψ, h, ξ) is called stochastically C-

stable (with respect to the norm in L2(Ω;Rd)) if there exist a constant Cstab and

a parameter value η ∈ (1,∞) such that for all (t, δ) ∈ T and all random variables

Y, Z ∈ L2(Ω,Ft,P;Rd) it holds
∥

∥E
[

Ψ(Y, t, δ)−Ψ(Z, t, δ)|Ft

]∥

∥

2

L2(Ω;Rd)

+ η
∥

∥

(

id− E[ · |Ft]
)(

Ψ(Y, t, δ)−Ψ(Z, t, δ)
)∥

∥

2

L2(Ω;Rd)

≤
(

1 + Cstabδ
)∥

∥Y − Z
∥

∥

2

L2(Ω;Rd)
.

(14)

Here and in what follows we denote by
(

id− E[ · |Ft]
)

Y = Y − E[Y |Ft] the pro-

jection of an R
d-valued random variable orthogonal to the conditional expectation

E[Y |Ft]. The next definition is concerned with the local truncation error. The

conditions (15) and (16) are well-known in the literature and are found in slightly

different form in [17, Th. 1.1] and [18, Th. 1.1]. A related concept has been applied

in [25], but the authors need higher moment estimates of the local truncation error.

Definition 3.3. A stochastic one-step method (Ψ, h, ξ) is called stochastically B-

consistent of order γ > 0 to (2) if there exists a constant Ccons such that for every

(t, δ) ∈ T it holds
∥

∥E
[

X(t+ δ)−Ψ(X(t), t, δ)|Ft

]
∥

∥

L2(Ω;Rd)
≤ Cconsδ

γ+1
(15)
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and
∥

∥

(

id− E[ · |Ft]
)(

X(t+ δ)−Ψ(X(t), t, δ)
)∥

∥

L2(Ω;Rd)
≤ Cconsδ

γ+ 1
2 ,(16)

where X : [0, T ]× Ω → R
d denotes the exact solution to (2).

Finally, it remains to give our definition of strong convergence.

Definition 3.4. A stochastic one-step method (Ψ, h, ξ) converges strongly with

order γ > 0 to the exact solution of (2) if there exists a constant C such that for

every vector of step sizes h ∈ (0, h]N it holds

max
n∈{0,...,N}

∥

∥Xh(tn)−X(tn)
∥

∥

L2(Ω;Rd)
≤ C|h|γ .

Here X denotes the exact solution to (2) and Xh ∈ G2(Th) is the grid function

generated by (Ψ, h, ξ) with step sizes h ∈ (0, h]N .

We first prove the following useful stability lemma. It follows from the discrete

Gronwall Lemma and gives a motivation for the conditions (14) to (16). The

underlying principle is similar to the proof of [17, Th. 1.1] and [18, Th. 1.1], but

differs in one important point: In [17, Th. 1.1] the error at time ti is related to

the error at time ti−1 by one discrete time step of the exact solution (compare

with [17, Lemma 1.1]). Here we follow the same idea, but we propagate the error

by one application of the one-step map. This turns out to be important since a

stochastically C-stable one-step method enjoys a global Lipschitz property.

Lemma 3.5. Let (Ψ, h, ξ) be a stochastically C-stable one-step method with con-

stants Cstab and η ∈ (1,∞). Let h ∈ (0, h]N be an arbitrary vector of step sizes.

For every grid function Z ∈ G2(Th) it then follows that

max
n∈{0,...,N}

‖Z(tn)−Xh(tn)‖
2
L2(Ω;Rd) ≤ e(1+Cstab(1+h))T

(

‖Z(0)− ξ‖2L2(Ω;Rd)

+

N
∑

i=1

(

1 + h−1
i

)∥

∥E
[

Z(ti)−Ψ(Z(ti−1), ti−1, hi)|Fti−1

]∥

∥

2

L2(Ω;Rd)

+ Cη

N
∑

i=1

∥

∥

(

id− E
[

· |Fti−1

])(

Z(ti)−Ψ(Z(ti−1), ti−1, hi)
)∥

∥

2

L2(Ω;Rd)

)

,

where Cη = 1 + (η − 1)−1 and Xh ∈ G2(Th) denotes the grid function generated by

(Ψ, h, ξ) with step sizes h.

Proof. For every 1 ≤ i ≤ N we write the difference of the two grid functions as

eh(ti) := Z(ti)−Xh(ti).

By the orthogonality of the conditional expectation it holds

‖eh(ti)‖
2
L2(Ω;Rd) =

∥

∥E[eh(ti)|Fti−1 ]
∥

∥

2

L2(Ω;Rd)
+
∥

∥eh(ti)− E[eh(ti)|Fti−1 ]
∥

∥

2

L2(Ω;Rd)
.

The first term is estimated as follows: Since

eh(ti) = Z(ti)−Ψ(Z(ti−1), ti−1, hi) + Ψ(Z(ti−1), ti−1, hi)−Xh(ti)

we first have
∥

∥E[eh(ti)|Fti−1 ]
∥

∥

L2(Ω;Rd)
≤

∥

∥E
[

Z(ti)−Ψ(Z(ti−1), ti−1, hi)|Fti−1

]
∥

∥

L2(Ω;Rd)

+
∥

∥E
[

Ψ(Z(ti−1), ti−1, hi)−Xh(ti)|Fti−1

]
∥

∥

L2(Ω;Rd)
.
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Then, after taking squares, it follows from the inequality (a+ b)2 = a2+2ab+ b2 ≤

(1 + h−1
i )a2 + (1 + hi)b

2 that

∥

∥E[eh(ti)|Fti−1 ]
∥

∥

2

L2(Ω;Rd)

≤ (1 + h−1
i )

∥

∥E
[

Z(ti)−Ψ(Z(ti−1), ti−1, hi)|Fti−1

]∥

∥

2

L2(Ω;Rd)

+ (1 + hi)
∥

∥E
[

Ψ(Z(ti−1), ti−1, hi)−Xh(ti)|Fti−1

]
∥

∥

2

L2(Ω;Rd)
.

Replacing hi by η − 1, the second term is estimated by
∥

∥eh(ti)− E[eh(ti)|Fti−1 ]
∥

∥

2

L2(Ω;Rd)

≤ Cη

∥

∥

(

id− E[ · |Fti−1 ]
)(

Z(ti)−Ψ(Z(ti−1), ti−1, hi)
)∥

∥

2

L2(Ω;Rd)

+ η
∥

∥

(

id− E[ · |Fti−1 ]
)(

Ψ(Z(ti−1), ti−1, hi)−Xh(ti)
)∥

∥

2

L2(Ω;Rd)
,

where Cη = 1 + (η − 1)−1. To sum up, we have shown that

∥

∥Z(ti)−Xh(ti)
∥

∥

2

L2(Ω;Rd)

≤ (1 + h−1
i )

∥

∥E
[

Z(ti)−Ψ(Z(ti−1), ti−1, hi)|Fti−1

]∥

∥

2

L2(Ω;Rd)

+ (1 + hi)
∥

∥E
[

Ψ(Z(ti−1), ti−1, hi)−Xh(ti)|Fti−1

]∥

∥

2

L2(Ω;Rd)

+ Cη

∥

∥

(

id− E[ · |Fti−1 ]
)(

Z(ti)−Ψ(Z(ti−1), ti−1, hi)
)∥

∥

2

L2(Ω;Rd)

+ η
∥

∥

(

id− E[ · |Fti−1 ]
)(

Ψ(Z(ti−1), ti−1, hi)−Xh(ti)
)∥

∥

2

L2(Ω;Rd)

for all 1 ≤ i ≤ N . After inserting Xh(ti) = Ψ(Xh(ti−1), ti−1, hi) and (14) we get
∥

∥Z(ti)−Xh(ti)
∥

∥

2

L2(Ω;Rd)

≤ (1 + h−1
i )

∥

∥E
[

Z(ti)−Ψ(Z(ti−1), ti−1, hi)|Fti−1

]
∥

∥

2

L2(Ω;Rd)

+ Cη

∥

∥

(

id− E[ · |Fti−1 ]
)(

Z(ti)−Ψ(Z(ti−1), ti−1, hi)
)∥

∥

2

L2(Ω;Rd)

+
(

1 + (1 + Cstab(1 + h))hi

)∥

∥Z(ti−1)−Xh(ti−1)
∥

∥

2

L2(Ω;Rd)
,

where we also made use of the fact that by (14)

hi

∥

∥E
[

Ψ(Z(ti−1), ti−1, hi)−Xh(ti)|Fti−1

]∥

∥

2

L2(Ω;Rd)

≤ hi(1 + Cstabh)
∥

∥Z(ti−1)−Xh(ti−1)
∥

∥

2

L2(Ω;Rd)
.

Next, we subtract
∥

∥Z(ti−1)−Xh(ti−1)
∥

∥

2

L2(Ω;Rd)
from both sides of this inequality.

Together with a telescopic sum argument this yields
∥

∥Z(tn)−Xh(tn)
∥

∥

2

L2(Ω;Rd)
−
∥

∥Z(0)−Xh(0)
∥

∥

2

L2(Ω;Rd)

=
n
∑

i=1

(

∥

∥Z(ti)−Xh(ti)
∥

∥

2

L2(Ω;Rd)
−
∥

∥Z(ti−1)−Xh(ti−1)
∥

∥

2

L2(Ω;Rd)

)

≤
n
∑

i=1

(

(

1 + h−1
i

)∥

∥E
[

Z(ti)−Ψ(Z(ti−1), ti−1, hi)|Fti−1

]∥

∥

2

L2(Ω;Rd)

+ Cη

∥

∥

(

id− E
[

· |Fti−1

])(

Z(ti)−Ψ(Z(ti−1), ti−1, hi)
)
∥

∥

2

L2(Ω;Rd)

+ (1 + Cstab(1 + h))hi

∥

∥Z(ti−1)−Xh(ti−1)
∥

∥

2

L2(Ω;Rd)

)

.
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After adding ‖Z(0)−Xh(0)‖2L2(Ω;Rd) = ‖Z(0)−ξ‖2
L2(Ω;Rd) the assertion follows from

an application of the discrete Gronwall Lemma. �

A simple consequence of the stability lemma is the following estimate of the

second moment of the grid function generated by the numerical method.

Corollary 3.6. Let (Ψ, h, ξ) be stochastically C-stable. If there exists a constant

C0 such that for all (t, δ) ∈ T it holds
∥

∥E
[

Ψ(0, t, δ)|Ft

]∥

∥

L2(Ω;Rd)
≤ C0δ,

∥

∥

(

id− E
[

· |Ft

])

Ψ(0, t, δ)
∥

∥

L2(Ω;Rd)
≤ C0δ

1
2 ,

then there exists a constant C > 0 such that for all vectors of step sizes h ∈ (0, h]N ,

max
n∈{0,...,N}

‖Xh(tn)‖L2(Ω;Rd) ≤ eCT
(

‖ξ‖2L2(Ω;Rd) + C2
0 (1 + h+ Cη)T

)
1
2

,

where Xh denotes the grid function generated by (Ψ, h, ξ) with step sizes h.

Proof. The assertion follows directly from an application of Lemma 3.5 with Z ≡

0 ∈ G2(Th). �

As the next theorem shows consistency and stability imply the strong conver-

gence of a stochastic one-step method.

Theorem 3.7. Let the stochastic one-step method (Ψ, h, ξ) be stochastically C-

stable and stochastically B-consistent of order γ > 0. If ξ = X0, then there exists

a constant C depending on Cstab, Ccons, T , h, and η such that for every vector of

step sizes h ∈ (0, h]N it holds

max
n∈{0,...,N}

∥

∥X(tn)−Xh(tn)
∥

∥

L2(Ω;Rd)
≤ C|h|γ ,

where X denotes the exact solution to (2) and Xh the grid function generated by

(Ψ, h, ξ) with step sizes h. In particular, (Ψ, h, ξ) is strongly convergent of order γ.

Proof. Let h ∈ (0, h]N be an arbitrary vector of step sizes. Since X(0) = Xh(0) =

X0 it directly follows from Lemma 3.5 that

max
n∈{0,...,N}

‖X(tn)−Xh(tn)‖
2
L2(Ω;Rd)

≤ e(1+Cstab(1+h))T
(

N
∑

i=1

(

1 + h−1
i

)
∥

∥E
[

X(ti)−Ψ(X(ti−1), ti−1, hi)|Fti

]
∥

∥

2

L2(Ω;Rd)

+ Cη

N
∑

i=1

∥

∥

(

id− E
[

· |Fti−1

])(

X(ti)−Ψ(X(ti−1), ti−1, hi)
)∥

∥

2

L2(Ω;Rd)

)

.

After using (15) and (16) we get

max
n∈{0,...,N}

∥

∥X(tn)−Xh(tn)
∥

∥

2

L2(Ω;Rd)

≤ e(1+Cstab(1+h))TC2
cons

N
∑

i=1

(

(1 + h−1
i )h

2(γ+1)
i + Cηh

2γ+1
i

)

≤ e(1+Cstab(1+h))T (1 + h+ Cη)TC
2
cons|h|

2γ .

This completes the proof. �
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4. Solving nonlinear equations under a one-sided Lipschitz condition

This section collects some results on the solvability of nonlinear equations under

a one-sided Lipschitz condition, which are needed for the error analysis of the split-

step backward Euler scheme.

The following Uniform Monotonicity Theorem is a standard result in nonlinear

analysis (see for instance, [19, Chap.6.4], [23, Theorem C.2]). We take explicit

notice of the Lipschitz bound for the inverse which will be used later on.

Theorem 4.1. Let G : Rd → R
d be a continuous mapping such that there exists a

positive constant c with

〈G(x1)−G(x2), x1 − x2〉 ≥ c|x1 − x2|
2(17)

for all x1, x2 ∈ R
d. Then G is a homeomorphism with Lipschitz continuous inverse,

in particular

∣

∣G−1(y1)−G−1(y2)
∣

∣ ≤
1

c
|y1 − y2|(18)

for all y1, y2 ∈ R
d.

Proof. It is well known [19, Chap. 6.4], [23, Theorem C.2] that G(x) = y has a

unique solution for every y ∈ R
d. Setting x1 = G−1(y1), x2 = G−1(y2), condition

(17) implies

c|x1 − x2|
2 ≤ 〈y1 − y2, x1 − x2〉 ≤ |y1 − y2||x1 − x2|,

from which the Lipschitz estimate (18) follows. �

The following consequence of Theorem 4.1 contains the key estimates for the C-

stability of the split-step backward Euler scheme. For related estimates under global

Lipschitz conditions on the diffusion coefficient functions we refer to [7, Lemmas

3.4, 4.5].

Corollary 4.2. Let the functions f : [0, T ]× R
d → R

d and gr : [0, T ]× R
d → R

d,

r = 1, . . . ,m, satisfy Assumption 2.1 with Lipschitz constant L > 0 and parameter

value η ∈ (12 ,∞). Let h ∈ (0, L−1) be given and define for every δ ∈ (0, h] the

mapping Fδ : [0, T ] × R
d → R

d by Fδ(t, x) = x − δf(t, x). Then, the mapping

R
d ∋ x 7→ Fδ(t, x) ∈ R

d is a homeomorphism for every t ∈ [0, T ].

In addition, the inverse F−1
δ (t, ·) : Rd → R

d satisfies

∣

∣F−1
δ (t, x1)− F−1

δ (t, x2)
∣

∣ ≤ (1 − Lδ)−1|x1 − x2|,(19)
∣

∣F−1
δ (t, x)

∣

∣ ≤ (1 − Lδ)−1
(

Lδ + |x|
)

,(20)

for every x, x1, x2 ∈ R
d and t ∈ [0, T ]. Moreover, there exists a constant C1 only

depending on L and h such that

∣

∣F−1
δ (t, x1)− F−1

δ (t, x2)
∣

∣

2
+ ηδ

m
∑

r=1

∣

∣gr(t, F−1
δ (t, x1))− gr(t, F−1

δ (t, x2))
∣

∣

2

≤ (1 + C1δ)
∣

∣x1 − x2

∣

∣

2

(21)

for every x1, x2 ∈ R
d and t ∈ [0, T ].
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Proof. Fix arbitrary δ ∈ (0, h] and t ∈ [0, T ]. First, note that by (3) the mapping

Fδ(t, ·) : Rd → R
d is continuous and satisfies

〈Fδ(t, x1)− Fδ(t, x2), x1 − x2〉

= |x1 − x2|
2 − δ〈f(t, x1)− f(t, x2), x1 − x2〉 ≥ (1− Lδ)|x1 − x2|

2

for all x1, x2 ∈ R
d. Note that 1 − Lδ > 0 follows from h ∈ (0, L−1) and δ ∈ (0, h].

Hence, we directly obtain the first assertion and (19) from Theorem 4.1.

Next, we set x0 := Fδ(t, 0) = −δf(t, 0) ∈ R
d. Then F−1

δ (t, x0) = 0 and for

arbitrary x ∈ R
d by (19) and (4) we derive

∣

∣F−1
δ (t, x)

∣

∣ =
∣

∣F−1
δ (t, x)− F−1

δ (t, x0)
∣

∣ ≤ (1− Lδ)−1|x− x0|

≤ (1− Lδ)−1
(

|x|+ δ|f(t, 0)|
)

≤ (1− Lδ)−1
(

|x|+ Lδ
)

.

It remains to give a proof of (21). By also taking the diffusion coefficient functions

into account, it follows from (3) that

〈Fδ(t, x1)− Fδ(t, x2), x1 − x2〉

= |x1 − x2|
2 − δ〈f(t, x1)− f(t, x2), x1 − x2〉

≥ (1 − Lδ)|x1 − x2|
2 + ηδ

m
∑

r=1

∣

∣gr(t, x1)− gr(t, x2)
∣

∣

2
.

For some y1, y2 ∈ R
d we substitute x1 = F−1

δ (t, y1) and x2 = F−1
δ (t, y2) into the

inequality. Then, after rearranging we end up with

∣

∣F−1
δ (t, y1)− F−1

δ (t, y2)
∣

∣

2
+ ηδ

m
∑

r=1

∣

∣gr(t, F−1
δ (t, y1))− gr(t, F−1

δ (t, y2))
∣

∣

2

≤
〈

y1 − y2, F
−1
δ (t, y1)− F−1

δ (t, y2)
〉

+ Lδ
∣

∣F−1
δ (t, y1)− F−1

δ (t, y2)
∣

∣

2
.

Now, an application of (19), together with the Cauchy-Schwarz inequality, yields

∣

∣F−1
δ (t, y1)− F−1

δ (t, y2)
∣

∣

2
+ ηδ

m
∑

r=1

∣

∣gr(t, F−1
δ (t, y1))− gr(t, F−1

δ (t, y2))
∣

∣

2

≤ |y1 − y2|
∣

∣F−1
δ (t, y1)− F−1

δ (t, y2)
∣

∣+ Lδ
∣

∣F−1
δ (t, y1)− F−1

δ (t, y2)
∣

∣

2

≤ (1− Lδ)−1
(

1 + (1− Lδ)−1Lδ
)

|y1 − y2|
2 = (1− Lδ)−2|y1 − y2|

2

for all y1, y2 ∈ R
d. Finally, note that b(δ) = (1−Lδ)−2 is a convex function, hence

for all δ ∈ [0, h],

(1− Lδ)−2 ≤ 1 + C1δ, C1 =
b(h)− b(0)

h
= L(2− Lh)(1 − Lh)−2,

and inequality (21) is verified. �

The following lemma contains some further estimates of F−1
δ , which will be useful

for the analysis of the local truncation error.

Lemma 4.3. Consider the same situation as in Corollary 4.2. Then there exist

constants C2, C3 only depending on L, h and q such that for every δ ∈ (0, h] the

inverse F−1
δ (t, ·) : Rd → R

d satisfies the estimates
∣

∣F−1
δ (t, x) − x

∣

∣ ≤ δC2

(

1 + |x|q
)

,(22)
∣

∣F−1
δ (t, x) − x− δf(t, x)

∣

∣ ≤ δ2C3

(

1 + |x|2q−1
)

(23)

for every x ∈ R
d and t ∈ [0, T ].
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Proof. Let x ∈ R
d be arbitrary. For the proof of (22) we get from (19) that

∣

∣F−1
δ (t, x)− x

∣

∣ =
∣

∣F−1
δ (t, x)− F−1

δ (t, Fδ(t, x))
∣

∣ ≤ (1− Lδ)−1δ
∣

∣f(t, x)
∣

∣.

After inserting (4) and since δ ≤ h we arrive at
∣

∣F−1
δ (t, x)− x

∣

∣ ≤ L(1− Lh)−1δ
(

1 + |x|q
)

,

which is (22) with C2 = L(1− Lh)−1.

Next, by making use of the substitution y = F−1
δ (t, x) as well as (6) we obtain

∣

∣F−1
δ (t, x)− x− δf(t, x)

∣

∣ =
∣

∣y − Fδ(t, y)− δf(t, Fδ(t, y))
∣

∣

= δ
∣

∣f(t, y)− f(t, Fδ(t, y))
∣

∣

≤ Lδ
(

1 + |y|q−1 + |Fδ(t, y)|
q−1

)
∣

∣y − Fδ(t, y)
∣

∣

≤ Lδ
(

1 + |x|q−1 + |F−1
δ (t, x)|q−1

)∣

∣F−1
δ (t, x) − x

∣

∣

for every x ∈ R
d. After inserting (22) and (20) we find that

∣

∣F−1
δ (t, x)− x− δf(t, x)

∣

∣ ≤ C2Lδ
2
(

1 + |x|q
)(

1 + |x|q−1 + |F−1
δ (t, x)|q−1

)

≤ δ2C3

(

1 + |x|2q−1
)

for a suitable constant C3 only depending on q, L, and h. �

5. C-stability and B-consistency of the SSBE method

In Section 3 we derived a strong convergence result in an abstract framework.

Using Section 4 we are now able to verify that the split-step backward Euler scheme

from Example 2.2 is stable and consistent with order γ = 1
2 .

Let us first show that the SSBE method is indeed a well-defined stochastic one-

step method in the sense of Definition 3.1. In Section 4 we saw that the implicit step

of the SSBE method admits a unique solution if f satisfies Assumption 2.1 with

one-sided Lipschitz constant L. To be more precise, let h ∈ (0, L−1) and consider

an arbitrary vector of step sizes h ∈ (0, h]N . Then, we obtain from Corollary 4.2

that for every 1 ≤ i ≤ N there exists a homeomorphism Fhi
(ti, ·) : Rd → R

d such

that X
SSBE

h (ti) = F−1
hi

(ti, X
SSBE
h (ti−1)) is the solution to

X
SSBE

h (ti) = XSSBE
h (ti−1) + hif(ti, X

SSBE

h (ti)).

Hence, we define the one-step map ΨSSBE : Rd × T × Ω → R
d of the split-step

backward Euler method by

ΨSSBE(x, t, δ) = F−1
δ (t+ δ, x) +

m
∑

r=1

gr(t+ δ, F−1
δ (t+ δ, x))∆δW

r(t)(24)

for every x ∈ R
d and (t, δ) ∈ T, where ∆δW

r(t) := W r(t + δ) −W r(t). Next, we

verify that ΨSSBE satisfies condition (12) and the assumptions of Corollary 3.6.

Proposition 5.1. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

with L ∈ (0,∞) and q ∈ (1,∞) and let h ∈ (0, L−1). For every initial value

ξ ∈ L2(Ω;F0,P;Rd) it holds that (ΨSSBE, h, ξ) is a stochastic one-step method.

In addition, there exists a constant C0, which depends on L, q, m, and h, such

that
∥

∥E
[

ΨSSBE(0, t, δ)|Ft

]∥

∥

L2(Ω;Rd)
≤ C0δ,(25)

∥

∥

(

id− E[ · |Ft]
)

ΨSSBE(0, t, δ)
∥

∥

L2(Ω;Rd)
≤ C0δ

1
2(26)
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for all (t, δ) ∈ T.

Proof. For the first assertion we only have to verify that ΨSSBE satisfies (12). For

this we fix arbitrary (t, δ) ∈ T and Z ∈ L2(Ω,Ft,P;Rd). Then, we obtain from

Corollary 4.2 that the mapping F−1
δ (t+ δ, ·) : Rd → R

d is a homeomorphism satis-

fying the linear growth bound (20). Hence, we have

F−1
δ (t+ δ, Z) ∈ L2(Ω,Ft,P;Rd).

Consequently, by the continuity of gr the mapping

Ω ∋ ω 7→ gr(t+ δ, F−1
δ (t+ δ, Z(ω))) ∈ R

d

is Ft/B(Rd)-measurable for every r = 1, . . . ,m. Therefore, ΨSSBE(Z, t, δ) : Ω → R
d

is a well-defined random variable, which is Ft+δ/B(Rd)-measurable. It remains to

show that ΨSSBE(Z, t, δ) is square integrable.

For this we first consider the case that Z = 0 ∈ L2(Ω;Rd). Then it is evident

that ΨSSBE(0, t, δ) ∈ L2(Ω,Ft+δ,P;Rd). In particular, it follows from (20) that
∥

∥E
[

ΨSSBE(0, t, δ)|Ft

]∥

∥

L2(Ω;Rd)
=

∣

∣F−1
δ (t+ δ, 0)

∣

∣ ≤ (1− Lδ)−1Lδ ≤ (1− Lh)−1Lδ.

Further, from an application of Itō’s isometry, (4) and (20) we get

∥

∥

(

id− E[ · |Ft]
)

ΨSSBE(0, t, δ)
∥

∥

2

L2(Ω;Rd)

=
∥

∥

∥

m
∑

r=1

gr(t+ δ, F−1
δ (t+ δ, 0))

(

W r(t+ δ)−W r(t)
)

∥

∥

∥

2

L2(Ω;Rd)

= δ

m
∑

r=1

∣

∣gr(t+ δ, F−1
δ (t+ δ, 0))

∣

∣

2

≤ L2mδ
(

1 +
∣

∣F−1
δ (t+ δ, 0)

∣

∣

q)2
≤ L2m

(

1 + (1− Lh)−qLqh
q)2

δ.

This verifies (25) and (26).

Next, for arbitrary Z ∈ L2(Ω;Ft,P;Rd) we compute by similar arguments

∥

∥ΨSSBE(Z, t, δ)−ΨSSBE(0, t, δ)
∥

∥

2

L2(Ω;Rd)

=
∥

∥F−1
δ (t+ δ, Z)− F−1

δ (t+ δ, 0)
∥

∥

2

L2(Ω;Rd)

+ δ

m
∑

r=1

∥

∥gr(t+ δ, F−1
δ (t+ δ, Z))− gr(t+ δ, F−1

δ (t+ δ, 0))
∥

∥

2

L2(Ω;Rd)

= E

[

∣

∣F−1
δ (t+ δ, Z)− F−1

δ (t+ δ, 0)
∣

∣

2

+ δ

m
∑

r=1

∣

∣gr(t+ δ, F−1
δ (t+ δ, Z))− gr(t+ δ, F−1

δ (t+ δ, 0))
∣

∣

2
]

.

Thus, an application of (21) yields

∥

∥ΨSSBE(Z, t, δ)− ΨSSBE(0, t, δ)
∥

∥

2

L2(Ω;Rd)
≤ (1 + C1δ)‖Z‖2L2(Ω;Rd).

This completes the proof. �

Theorem 5.2. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

with L ∈ (0,∞) and η ∈ (1,∞). Further, let h ∈ (0, L−1). Then, for every

ξ ∈ L2(Ω,F0,P;Rd) the SSBE scheme (ΨSSBE, h, ξ) is stochastically C-stable.
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Proof. Let us consider arbitrary (t, δ) ∈ T and Y, Z ∈ L2(Ω,Ft,P;Rd). For the

proof of (14) we first note that

E
[

ΨSSBE(Y, t, δ)−ΨSSBE(Z, t, δ)|Ft

]

= F−1
δ (t+ δ, Y )− F−1

δ (t+ δ, Z)

and
(

id− E[ · |Ft]
)(

ΨSSBE(Y, t, δ)−ΨSSBE(Z, t, δ)
)

=

m
∑

r=1

(

gr(t+ δ, F−1
δ (t+ δ, Y ))− gr(t+ δ, F−1

δ (t+ δ, Z))
)

∆δW
r(t).

Then we obtain from (21)
∥

∥F−1
δ (t+ δ, Y )− F−1

δ (t+ δ, Z)
∥

∥

2

L2(Ω;Rd)

+ η
∥

∥

∥

m
∑

r=1

(

gr(t+ δ, F−1
δ (t+ δ, Y ))− gr(t+ δ, F−1

δ (t+ δ, Z))
)

∆δW
r(t)

∥

∥

∥

2

L2(Ω;Rd)

= E

[

∣

∣F−1
δ (t+ δ, Y )− F−1

δ (t+ δ, Z)
∣

∣

2

+ ηδ

m
∑

r=1

∣

∣gr(t+ δ, F−1
δ (t+ δ, Y ))− gr(t+ δ, F−1

δ (t+ δ, Z))
∣

∣

2
]

≤ (1 + C1δ)
∥

∥Y − Z
∥

∥

2

L2(Ω;Rd)
.

which is condition (14) for the SSBE method with Cstab = C1. �

The following fact is a consequence of Theorem 5.2 and Corollary 3.6 together

with (25) and (26).

Corollary 5.3. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

with L ∈ (0,∞) and η ∈ (1,∞). Let h ∈ (0, L−1). Then, for every vector of step

sizes h ∈ (0, h]N it holds for the grid function Xh generated by (ΨSSBE, h, ξ) that

max
n∈{0,...,N}

‖XSSBE
h (tn)‖L2(Ω;Rd) ≤ eCT

(

‖ξ‖2L2(Ω;Rd) + C2
0 (1 + h+ Cη)T

)
1
2

,

where the constant C0 is the same as in Proposition 5.1.

In preparation of the proof of consistency we state the following result on the

Hölder continuity of the exact solution to (2) with respect to the norm in Lp(Ω;Rd).

Proposition 5.4. Let f and gr, r = 1, . . . ,m, satisfy Assumption 2.1 with L ∈

(0,∞) and q ∈ (1,∞). For every p ∈ [2,∞) with supt∈[0,T ] ‖X(t)‖Lpq(Ω;Rd) < ∞

there exists a constant C such that
∥

∥X(t1)−X(t2)
∥

∥

Lp(Ω;Rd)
≤ C

(

1 + sup
t∈[0,T ]

‖X(t)‖q
Lpq(Ω;Rd)

)

|t1 − t2|
1
2

for all t1, t2 ∈ [0, T ], where X denotes the exact solution to (2).

Proof. Let 0 ≤ t1 < t2 ≤ T . After inserting (7) we get

∥

∥X(t1)−X(t2)
∥

∥

Lp(Ω;Rd)
≤

∫ t2

t1

∥

∥f(τ,X(τ))
∥

∥

Lp(Ω;Rd)
dτ

+
∥

∥

∥

m
∑

r=1

∫ t2

t1

gr(τ,X(τ)) dW r(τ)
∥

∥

∥

Lp(Ω;Rd)
.
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For the drift integral it follows from (4) that

∫ t2

t1

∥

∥f(τ,X(τ))
∥

∥

Lp(Ω;Rd)
dτ ≤ L

(

1 + sup
τ∈[0,T ]

‖X(τ)‖q
Lpq(Ω;Rd)

)

|t1 − t2|.

In addition, the Burkholder-Davis-Gundy inequality yields

∥

∥

∥

m
∑

r=1

∫ t2

t1

gr(τ,X(τ)) dW r(τ)
∥

∥

∥

Lp(Ω;Rd)
≤ C

(

m
∑

r=1

∫ t2

t1

∥

∥gr(τ,X(τ))
∥

∥

2

Lp(Ω;Rd)
dτ

)
1
2

for a constant C = C(p). Then, we deduce from (4) that

∥

∥gr(τ,X(τ))
∥

∥

Lp(Ω;Rd)
≤ L

(

1 + sup
τ∈[0,T ]

∥

∥X(τ)
∥

∥

q

Lpq(Ω;Rd)

)

.

Therefore, it holds

∥

∥

∥

m
∑

r=1

∫ t2

t1

gr(τ,X(τ)) dW r(τ)
∥

∥

∥

Lp(Ω;Rd)

≤ CLm
1
2

(

1 + sup
τ∈[0,T ]

∥

∥X(τ)
∥

∥

q

Lpq(Ω;Rd)

)

|t1 − t2|
1
2 .

This completes the proof. �

The following two lemmas contain estimates, which play important roles in the

proofs of consistency for the SSBE scheme and the PEM method.

Lemma 5.5. Let Assumption 2.1 be satisfied by f and gr, r = 1, . . . ,m, with

L ∈ (0,∞) and q ∈ (1,∞). Further, let the exact solution X to (2) satisfy

supt∈[0,T ] ‖X(t)‖L4q−2(Ω;Rd) < ∞. Then, there exists a constant C such that for

all t1, t2 ∈ [0, T ] and s1, s2 ∈ [t1, t2] it holds

∫ t2

t1

∥

∥f(τ,X(τ)) − f(s1, X(s2))
∥

∥

L2(Ω;Rd)
dτ

≤ C
(

1 + sup
t∈[0,T ]

∥

∥X(t)
∥

∥

2q−1

L4q−2(Ω;Rd)

)

|t1 − t2|
3
2 .

Proof. It follows from (5) and (6) that

∣

∣f(τ1, x1)− f(τ2, x2)
∣

∣ ≤
∣

∣f(τ1, x1)− f(τ1, x2)
∣

∣+
∣

∣f(τ1, x2)− f(τ2, x2)
∣

∣

≤ L
(

1 + |x1|
q−1 + |x2|

q−1
)

|x1 − x2|+ L
(

1 + |x2|
q
)

|τ1 − τ2|
1
2

for all τ1, τ2 ∈ [0, T ] and x1, x2 ∈ R
d. By an additional application of Hölder’s

inequality with exponents ρ = 2− 1
q

and ρ′ = 2q−1
q−1 we get for all s1, s2, τ ∈ [t1, t2]

∥

∥f(τ,X(τ))− f(s1, X(s2))
∥

∥

L2(Ω;Rd)

≤ L
∥

∥

(

1 + |X(τ)|q−1 + |X(s2)|
q−1

)

|X(τ)−X(s2)|
∥

∥

L2(Ω;R)

+ L
∥

∥

(

1 + |X(s2)|
q
)

|τ − s1|
1
2

∥

∥

L2(Ω;Rd)

≤ L
(

1 + 2 sup
t∈[0,T ]

‖X(t)‖q−1

L2ρ′(q−1)(Ω;Rd)

)

‖X(τ)−X(s2)‖L2ρ(Ω;Rd)

+ L
(

1 + sup
t∈[0,T ]

‖X(t)‖q
L2q(Ω;Rd)

)

|t1 − t2|
1
2 .

(27)
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Observe that 2ρ′(q − 1) = 4q − 2 and 2q ≤ 4q − 2 for q ∈ (1,∞). Moreover,

Proposition 5.4 with p = 2ρ yields

‖X(τ)−X(s2)‖L2ρ(Ω;Rd) ≤ C
(

1 + sup
t∈[0,T ]

‖X(t)‖q
L2ρq(Ω;Rd)

)

|τ − s2|
1
2

≤ C
(

1 + sup
t∈[0,T ]

‖X(t)‖q
L4q−2(Ω;Rd)

)

|t1 − t2|
1
2 .

Altogether, this proves

∥

∥f(τ,X(τ))− f(s1, X(s2))
∥

∥

L2(Ω;Rd)
≤ C

(

1 + sup
t∈[0,T ]

‖X(t)‖2q−1
L4q−2(Ω;Rd)

)

|t1 − t2|
1
2

for all s1, s2, τ ∈ [t1, t2]. After integrating over τ ∈ [t1, t2] the proof is completed.

�

Lemma 5.6. Let Assumption 2.1 be satisfied by f and gr, r = 1, . . . ,m. Further,

let the exact solution X to (2) satisfy supτ∈[0,T ] ‖X(τ)‖L4q−2(Ω;Rd) < ∞. Then,

there exists a constant C such that for all t1, t2, s ∈ [0, T ] with 0 ≤ t1 ≤ s ≤ t2 ≤ T

it holds

∥

∥

∥

m
∑

r=1

∫ t2

t1

(

gr(τ,X(τ))− gr(s,X(t1))
)

dW r(τ)
∥

∥

∥

L2(Ω;Rd)

≤ Cm
1
2

(

1 + sup
τ∈[0,T ]

∥

∥X(τ)
∥

∥

2q−1

L4q−2(Ω;Rd)

)

|t1 − t2|.

Proof. By the Itō isometry we get

∥

∥

∥

m
∑

r=1

∫ t2

t1

(

gr(τ,X(τ)) − gr(s,X(t1))
)

dW r(τ)
∥

∥

∥

L2(Ω;Rd)

=
(

m
∑

r=1

∫ t2

t1

∥

∥gr(τ,X(τ))− gr(s,X(t1))
∥

∥

2

L2(Ω;Rd)
dτ

)
1
2

.

Then, the integrands are estimated in the same way as in (27) by

∥

∥gr(τ,X(τ)) − gr(s,X(t1))
∥

∥

L2(Ω;Rd)

≤ L
(

1 + 2 sup
t∈[0,T ]

‖X(t)‖q−1

L2ρ′(q−1)(Ω;Rd)

)

‖X(τ)−X(t1)‖L2ρ(Ω;Rd)

+ L
(

1 + sup
t∈[0,T ]

‖X(t)‖q
L2q(Ω;Rd)

)

|τ − s|
1
2

≤ C
(

1 + sup
t∈[0,T ]

‖X(t)‖2q−1
L4q−2(Ω;Rd)

)

|t1 − t2|
1
2 ,

where we again made use of the 1
2 -Hölder continuity of the exact solution. �

The next theorem finally investigates the B-consistency of the SSBE method.

Theorem 5.7. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

with L ∈ (0,∞) and q ∈ (1,∞). Let h ∈ (0, L−1). If the exact solution X to

(2) satisfies supτ∈[0,T ] ‖X(τ)‖L4q−2(Ω;Rd) < ∞, then the split-step backward Euler

method (ΨSSBE, h,X0) is stochastically B-consistent of order γ = 1
2 .
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Proof. Let (t, δ) ∈ T be arbitrary. First we insert (7) and (24) and obtain

X(t+ δ)−ΨSSBE(X(t), t, δ) =

∫ t+δ

t

(

f(τ,X(τ))− f(t+ δ,X(t))
)

dτ

+X(t) + δf(t+ δ,X(t))− F−1
δ (t+ δ,X(t))

+

m
∑

r=1

∫ t+δ

t

(

gr(τ,X(τ))− gr(t+ δ,X(t))
)

dW r(τ)

+

m
∑

r=1

(

gr(t+ δ,X(t))− gr(t+ δ, F−1
δ (t+ δ,X(t)))

)

∆δW
r(t).

For the proof of (15) we therefore have to estimate

∥

∥E
[

X(t+ δ)−ΨSSBE(X(t), t, δ)|Ft

]∥

∥

L2(Ω;Rd)

≤

∫ t+δ

t

∥

∥E
[

f(τ,X(τ))− f(t+ δ,X(t))|Ft

]∥

∥

L2(Ω;Rd)
dτ

+
∥

∥X(t) + δf(t+ δ,X(t))− F−1
δ (t+ δ,X(t))

∥

∥

L2(Ω;Rd)
.

(28)

Together with the inequality ‖E[Y |Ft]‖L2(Ω;Rd) ≤ ‖Y ‖L2(Ω;Rd) for all Y ∈ L2(Ω;Rd)

it follows from Lemma 5.5 that
∫ t+δ

t

∥

∥E
[

f(τ,X(τ))− f(t+ δ,X(t))|Ft

]∥

∥

L2(Ω;Rd)
dτ ≤ Cconsδ

3
2

for a constant Ccons depending on L, q, m, and supτ∈[0,T ] ‖X(τ)‖2q−1
L4q−2(Ω;Rd)

. In

order to complete the proof of (15) we need to show a similar estimate of the

second term in (28). In fact, it follows from (23) that

∥

∥X(t) + δf(t+ δ,X(t))− F−1
δ (t+ δ,X(t))

∥

∥

L2(Ω;Rd)

≤ C3δ
2
∥

∥1 + |X(t)|2q−1
∥

∥

L2(Ω;R)
≤ C3δ

2
(

1 + sup
τ∈[0,T ]

‖X(τ)‖2q−1
L4q−2(Ω;Rd)

)

.

This completes the proof of (15) with γ = 1
2 and we turn our attention to the proof

of (16). For this we need to estimate the following three terms

∥

∥

(

id− E[ · |Ft]
)(

X(t+ δ)−ΨSSBE(X(t), t, δ)
)∥

∥

L2(Ω;Rd)

≤

∫ t+δ

t

∥

∥

(

id− E[ · |Ft]
)(

f(τ,X(τ))− f(t+ δ,X(t))
)∥

∥

L2(Ω;Rd)
dτ

+
∥

∥

∥

m
∑

r=1

∫ t+δ

t

(

gr(τ,X(τ))− gr(t+ δ,X(t))
)

dW r(τ)
∥

∥

∥

L2(Ω;Rd)

+
∥

∥

∥

m
∑

r=1

(

gr(t+ δ,X(t))− gr(t+ δ, F−1
δ (t+ δ,X(t)))

)

∆δW
r(t)

∥

∥

∥

L2(Ω;Rd)
.

(29)

For the first term we get from Lemma 5.5 and since ‖(id − E[ · |Ft]
)

Y ‖L2(Ω;Rd) ≤

‖Y ‖L2(Ω;Rd) for all Y ∈ L2(Ω;Rd) that

∫ t+δ

t

∥

∥

(

id− E[ · |Ft]
)(

f(τ,X(τ))− f(t+ δ,X(t))
)
∥

∥

L2(Ω;Rd)
dτ ≤ Cconsδ

3
2 .
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We apply Lemma 5.6 to the second term in (29). This yields

∥

∥

∥

m
∑

r=1

∫ t+δ

t

(

gr(τ,X(τ))− gr(t+ δ,X(t))
)

dW r(τ)
∥

∥

∥

L2(Ω;Rd)
≤ Cconsδ.

Finally, for the last term in (29) it follows from (6), (20), and (22) that

∣

∣gr(t+ δ,X(t))− gr(t+ δ, F−1
δ (t+ δ,X(t)))

∣

∣

≤ L
(

1 + |X(t)|q−1 + |F−1
δ (t+ δ,X(t))|q−1

)∣

∣X(t)− F−1
δ (t+ δ,X(t))

∣

∣

≤ δC2L
(

1 + |X(t)|q−1 + (1− Lδ)−(q−1)(Lδ + |X(t)|)q−1
)(

1 + |X(t)|q
)

≤ Cδ
(

1 + |X(t)|2q−1
)

for a suitable constant C only depending on C2, L, q, and h. Therefore,

∥

∥

∥

m
∑

r=1

(

gr(t+ δ,X(t))− gr(t+ δ, F−1
δ (t+ δ,X(t)))

)

∆δW
r(t)

∥

∥

∥

2

L2(Ω;Rd)

= δ

m
∑

r=1

∥

∥gr(t+ δ,X(t))− gr(t+ δ, F−1
δ (t+ δ,X(t)))

∥

∥

2

L2(Ω;Rd)

≤ C2mδ3
(

1 + sup
τ∈[0,T ]

‖X(τ)‖2q−1
L4q−2(Ω;Rd)

)2

.

Altogether, this completes the proof of (16). �

The strong convergence of the SSBE scheme follows now directly from Theo-

rems 5.2 and 5.7 as well as Theorem 3.7.

Theorem 5.8. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

with constants L ∈ (0,∞), η ∈ (1,∞), and q ∈ (1,∞). Let h ∈ (0, L−1). If the

exact solution X to (2) satisfies supτ∈[0,T ] ‖X(τ)‖L4q−2(Ω;Rd) < ∞, then the split-

step backward Euler method (ΨSSBE, h,X0) is strongly convergent of order γ = 1
2 .

Remark 5.9. Instead of the SSBE method many authors study the implicit Euler-

Maruyama method or backward Euler-Maruyama method (BEM) from [13, Chap. 12].

For instance, in [1, 7, 16] this scheme is considered for the approximation of sto-

chastic differential equations with super-linearly growing coefficient functions.

Let h = (h1, . . . , hN) be a suitable vector of step sizes. Then, the BEM method

is implicitly given by the recursion

XBEM
h (ti) = XBEM

h (ti−1) + hif(ti, X
BEM
h (ti))

+

m
∑

r=1

gr(ti−1, X
BEM
h (ti−1))

(

W r(ti)−W r(ti−1)
)

, 1 ≤ i ≤ N,

XBEM
h (0) = X0.

For the remainder of this remark, we assume that h is a vector of equidistant step

sizes, that is hi = hj , for all i, j = 1, . . . , N . Further, we consider the situation of

autonomous coefficient functions f(t, x) = f(x) and gr(t, x) = gr(x), r = 1, . . . ,m,

for all x ∈ R
d and t ∈ [0, T ].

Under these additional conditions we are able to mimic an idea of proof from [7,

Lemma 5.1]. The starting point is the observation that the defining recursion of
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the BEM method can be rewritten artificially as a split-step method by

X
BEM

h (ti) = XBEM
h (ti−1) +

m
∑

r=1

gr(XBEM
h (ti−1))∆hi

W r(ti−1),

XBEM
h (ti) = X

BEM

h (ti) + hif(X
BEM
h (ti))

(30)

for every 1 ≤ i ≤ N . Thus, the SSBE scheme and the BEM method only differ

in the order, in which the implicit step for the drift part and the explicit step for

the diffusion part are applied. Consequently, one easily verifies that X
BEM

h is the

grid function generated by the SSBE scheme (ΨSSBE, h, ξ) with initial condition

ξ = Fh1(X0). Then, one can interpret the BEM method as a perturbation of the

SSBE scheme in the following sense: By the homeomorphism Fhi
(·) it holds

XBEM
h (ti) = F−1

hi
(X

BEM

h (ti)).(31)

Therefore, a strong error result for the BEM method can be derived by an appli-

cation of the stability Lemma 3.5, where XBEM
h takes over the role of the exact

solution. To be more precise, we decompose the strong error of the BEM method

into the following three parts
∥

∥X(tn)−XBEM
h (tn)

∥

∥

L2(Ω;Rd)
≤

∥

∥X(tn)−XSSBE
h (tn)

∥

∥

L2(Ω;Rd)

+
∥

∥XSSBE
h (tn)−X

BEM

h (tn)
∥

∥

L2(Ω;Rd)
+
∥

∥X
BEM

h (tn)−XBEM
h (tn)

∥

∥

L2(Ω;Rd)

(32)

for every n ∈ {1, . . . , N}. Then the first term is the strong error of the SSBE

scheme while the second can be estimated by Lemma 3.5 and (4). Similarly, we

derive a suitable bound for the third term by inserting (30) and making again use

of (4). However, this line of arguments has the disadvantage that we are in need of

higher moment bounds for the grid function XBEM
h , uniformly with respect to the

step size h. We have not been able to prove if the BEM method is a stochastically

C-stable numerical one-step scheme under Assumption 2.1. We refer to [1] for a

more direct proof of the mean-square convergence of the backward Euler method,

which does not rely on higher moment bounds of the numerical scheme.

6. C-stability and B-consistency of the PEM method

In this section we prove that the projected Euler-Maruyama method from Ex-

ample 2.3 is stochastically C-stable and B-consistent of order γ = 1
2 .

We begin by showing that the PEM method is a stochastic one-step method

in the sense of Definition 3.1. Let Assumption 2.1 be satisfied with growth rate

q ∈ (1,∞). Then we set α = 1
2(q−1) and for an arbitrary upper step size bound

h ∈ (0, 1] we define the one-step map ΨPEM : Rd × T× Ω → R
d by

ΨPEM(x, t, δ) := min(1, δ−α|x|−1)x+ δf(t,min(1, δ−α|x|−1)x)

+

m
∑

r=1

gr(t,min(1, δ−α|x|−1)x)∆δW
r(t)

(33)

for every x ∈ R
d and (t, δ) ∈ T. As before we write ∆δW

r(t) = W r(t+ δ)−W r(t).

Proposition 6.1. Let the functions f and gr, r = 1, . . . ,m, satisfy Assump-

tion 2.1 with L ∈ (0,∞), q ∈ (1,∞), and let h ∈ (0, 1]. For every initial value

ξ ∈ L2(Ω;F0,P;Rd) it holds that (ΨPEM, h, ξ) with α = 1
2(q−1) is a stochastic

one-step method.
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In addition, there exists a constant C0 only depending on L and m such that
∥

∥E
[

ΨPEM(0, t, δ)|Ft

]
∥

∥

L2(Ω;Rd)
≤ C0δ,(34)

∥

∥

(

id− E[ · |Ft]
)

ΨPEM(0, t, δ)
∥

∥

L2(Ω;Rd)
≤ C0δ

1
2(35)

for all (t, δ) ∈ T.

Proof. As in the proof of Proposition 5.1 we first verify that ΨPEM satisfies (12).

Let us fix arbitrary (t, δ) ∈ T and Z ∈ L2(Ω,Ft,P;Rd).

By the continuity and boundedness of the mapping R
d ∋ x 7→ min(1, δ−α|x|−1)x

we obtain

min(1, δ−α|Z|−1)Z ∈ L∞(Ω,Ft,P;Rd).

Consequently, by (4) it also holds true that

f(t,min(1, δ−α|Z|−1)Z) ∈ L∞(Ω,Ft,P;Rd)

as well as

gr(t,min(1, δ−α|Z|−1)Z) ∈ L∞(Ω,Ft,P;Rd)

for every r = 1, . . . ,m. Therefore, ΨPEM(Z, t, δ) : Ω → R
d is an Ft+δ/B(Rd)-

measurable random variable, which satisfies condition (12).

It remains to show (34) and (35). From (4) it follows at once that
∥

∥E
[

ΨPEM(0, t, δ)|Ft

]
∥

∥

L2(Ω;Rd)
=

∣

∣δf(t, 0)
∣

∣ ≤ Lδ.

Similarly, from Itō’s isometry and (4) we get

∥

∥

(

id− E[ · |Ft]
)

ΨPEM(0, t, δ)
∥

∥

2

L2(Ω;Rd)

=
∥

∥

∥

m
∑

r=1

gr(t, 0)
(

W r(t+ δ)−W r(t)
)

∥

∥

∥

2

L2(Ω;Rd)
= δ

m
∑

r=1

∣

∣gr(t, 0)
∣

∣

2
≤ L2mδ.

This verifies (34) and (35). �

For the formulation of the following lemmas we introduce the abbreviation

x◦ := min(1, δ−α|x|−1)x(36)

for every x ∈ R
d and every step size δ ∈ (0, 1].

Lemma 6.2. For every α ∈ (0,∞) and δ ∈ (0, 1] the mapping R
d ∋ x 7→ x◦ ∈ R

d

is globally Lipschitz continuous with Lipschitz constant 1. In particular, it holds
∣

∣x◦
1 − x◦

2

∣

∣ ≤
∣

∣x1 − x2

∣

∣(37)

for all x1, x2 ∈ R
d.

Proof. For a proof of the Lipschitz continuity we first compute
∣

∣x◦
1 − x◦

2

∣

∣

2
= |x1 − x2|

2 +
[∣

∣x◦
1

∣

∣

2
− |x1|

2 − 2
(

〈x◦
1, x

◦
2〉 − 〈x1, x2〉

)

+
∣

∣x◦
2

∣

∣

2
− |x2|

2
]

for all x1, x2 ∈ R
d. We show that the second term is always nonpositive.

This is clearly true for the case |x1| ≤ δ−α and |x2| ≤ δ−α, since then xi = x◦
i ,

i ∈ {1, 2}. Therefore, for the rest of this proof we assume without loss of generality
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that |x1| > δ−α. After inserting this into the second term we obtain from an

application of the Cauchy-Schwarz inequality
∣

∣x◦
1

∣

∣

2
− |x1|

2 − 2
(

〈x◦
1, x

◦
2〉 − 〈x1, x2〉

)

+
∣

∣x◦
2

∣

∣

2
− |x2|

2

= δ−2α − |x1|
2 +min(|x2|, δ

−α)2 − |x2|
2

+ 2
(

1− δ−α|x1|
−1 min(1, δ−α|x2|

−1)
)

〈x1, x2〉

≤ δ−2α − |x1|
2 +min(|x2|, δ

−α)2 − |x2|
2

+ 2
(

|x1||x2| − δ−α min(|x2|, δ
−α)

)

=
(

δ−α −min(|x2|, δ
−α)

)2
−
(

|x1| − |x2|
)2

≤ 0,

since we assumed |x1| > δ−α. This proves the asserted Lipschitz continuity. �

The following inequality (38) will play the same role for the stability analysis of

the PEM method as (21) does for the SSBE scheme.

Lemma 6.3. Let f and gr, r = 1, . . . ,m, satisfy Assumption 2.1 with L ∈ (0,∞),

q ∈ (1,∞), and η ∈ (12 ,∞). Consider the mapping R
d ∋ x 7→ x◦ ∈ R

d defined

in (36) with α ∈ (0, 1
2(q−1) ] and δ ∈ (0, 1]. Then, there exists a constant C only

depending on L with

∣

∣x◦
1 − x◦

2 + δ(f(t, x◦
1)− f(t, x◦

2))
∣

∣

2
+ 2ηδ

m
∑

r=1

∣

∣gr(t, x◦
1)− gr(t, x◦

2)
∣

∣

2

≤ (1 + Cδ)|x1 − x2|
2

(38)

for all x1, x2 ∈ R
d.

Proof. For the proof of (38) we obtain from (3)
∣

∣x◦
1 − x◦

2 + δ(f(t, x◦
1)− f(t, x◦

2))
∣

∣

2

=
∣

∣x◦
1 − x◦

2

∣

∣

2
+ 2δ

〈

x◦
1 − x◦

2, f(t, x
◦
1)− f(t, x◦

2)
〉

+ δ2
∣

∣f(t, x◦
1)− f(t, x◦

2)
∣

∣

2

≤ (1 + 2Lδ)
∣

∣x◦
1 − x◦

2

∣

∣

2
− 2ηδ

m
∑

r=1

∣

∣gr(t, x◦
1)− gr(t, x◦

2)
∣

∣

2
+ δ2

∣

∣f(t, x◦
1)− f(t, x◦

2)
∣

∣

2

for all x1, x2 ∈ R
d. Next, applications of (6) and (37) yield

∣

∣f(t, x◦
1)− f(t, x◦

2)
∣

∣ ≤ L
(

1 + |x◦
1|

q−1 + |x◦
2|

q−1
)∣

∣x◦
1 − x◦

2

∣

∣

≤ L
(

1 + 2δ−α(q−1)
)∣

∣x1 − x2

∣

∣,

where we also made use of the fact that |x◦
1|, |x

◦
2| ≤ δ−α. Since α ∈ (0, 1

2(q−1) ] and

δ ∈ (0, 1] it follows that δ−α(q−1) ≤ δ−
1
2 . Hence, we get

∣

∣x◦
1 − x◦

2 + δ(f(t, x◦
1)− f(t, x◦

2))
∣

∣

2
+ 2ηδ

m
∑

r=1

∣

∣gr(t, x◦
1)− gr(t, x◦

2)
∣

∣

2

≤ (1 + 2Lδ)
∣

∣x1 − x2

∣

∣

2
+ δ2L2

(

1 + 2δ−
1
2

)2∣
∣x1 − x2

∣

∣

2
≤ (1 + Cδ)

∣

∣x1 − x2

∣

∣

2

with C = 2L+ 9L2. �

The next theorem verifies that the PEM method is stochastically C-stable.

Theorem 6.4. Let the functions f and gr, r = 1, . . . ,m, satisfy Assumption 2.1

with L ∈ (0,∞), q ∈ (1,∞), and η ∈ (12 ,∞). Further, let h ∈ (0, 1]. Then, for
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every ξ ∈ L2(Ω,F0,P;Rd) the projected Euler-Maruyama method (ΨPEM, h, ξ) with

α = 1
2(q−1) is stochastically C-stable.

Proof. Let (t, δ) ∈ T be arbitrary and consider Y, Z ∈ L2(Ω,Ft,P;Rd). By recalling

the notation (36) we get that

E
[

ΨPEM(Y, t, δ)−ΨPEM(Z, t, δ)|Ft

]

= Y ◦ + δf(t, Y ◦)− (Z◦ + δf(t, Z◦))

and

(

id− E[ · |Ft]
)(

ΨPEM(Y, t, δ)−ΨPEM(Z, t, δ)
)

=
m
∑

r=1

(

gr(t, Y ◦)− gr(t, Z◦)
)

∆δW
r(t).

Then, from the Itō isometry and (38) it follows

∥

∥Y ◦ + δf(t, Y ◦)− (Z◦ + δf(t, Z◦))
∥

∥

2

L2(Ω;Rd)

+ 2η
∥

∥

∥

m
∑

r=1

(

gr(t, Y ◦)− gr(t, Z◦)
)

∆δW
r(t)

∥

∥

∥

2

L2(Ω;Rd)

= E

[

∣

∣Y ◦ + δf(t, Y ◦)− (Z◦ + δf(t, Z◦))
∣

∣

2
+ 2ηδ

m
∑

r=1

∣

∣gr(t, Y ◦)− gr(t, Z◦)
∣

∣

2
]

≤ (1 + Cδ)
∥

∥Y − Z
∥

∥

2

L2(Ω;Rd)
.

which is condition (14) for the PEM method with Cstab = C. �

It remains to show that the PEM method is stochastically B-consistent of order

γ = 1
2 . An important ingredient of our proof is contained in the following lemma,

which is based on an argument already found in the proof of [7, Theorem 2.2].

Lemma 6.5. Let L ∈ (0,∞) and κ ∈ [1,∞). Consider a measurable mapping

ϕ : Rd → R
d which satisfies

|ϕ(x)| ≤ L
(

1 + |x|κ
)

for all x ∈ R
d. For some p ∈ (2,∞) let Y ∈ Lpκ(Ω;Rd). Then there exists a

constant C only depending on L and p with

∥

∥ϕ(Y )− ϕ(Y ◦)
∥

∥

L2(Ω;Rd)
≤ C

(

1 + ‖Y ‖κLpκ(Ω;Rd)

)

p
2 δ

1
2α(p−2)κ

for all δ ∈ (0, 1], where Y ◦ = min
(

1, δ−α|Y |−1
)

Y with arbitrary α ∈ (0,∞).

Proof. We apply the same idea as in the proof of [7, Theorem 2.2]. Consider the

two measurable sets

Aδ :=
{

ω ∈ Ω : |Y (ω)| ≤ δ−α
}

∈ F

and Ac
δ := Ω \Aδ. Note that Y (ω) = Y ◦(ω) for all ω ∈ Aδ. Thus,

∥

∥ϕ(Y )− ϕ(Y ◦)
∥

∥

2

L2(Ω;Rd)
=

∫

Ω

∣

∣ϕ(Y (ω))− ϕ(Y ◦(ω))
∣

∣

2
IAc

δ
(ω) dP(ω).
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For ν, ρ, ρ′ ∈ (0,∞) with 1
ρ
+ 1

ρ′
= 1 we apply the Young inequality ab ≤ δν

ρ
aρ +

1
ρ′
δ−ν

ρ′

ρ bρ
′

. If we set ρ = p
2 then we obtain

∫

Ω

∣

∣ϕ(Y (ω))− ϕ(Y ◦(ω))
∣

∣

2
IAc

δ
(ω) dP(ω)

≤
2δν

p

∥

∥ϕ(Y )− ϕ(Y ◦)
∥

∥

p

Lp(Ω;Rd)
+
(

1−
2

p

)

δ−
2ν

p−2P(Ac
δ).

Now, the polynomial growth condition on ϕ yields

‖ϕ(Y )− ϕ(Y ◦)‖Lp(Ω;Rd) ≤ ‖ϕ(Y )‖Lp(Ω;Rd) + ‖ϕ(Y ◦)‖Lp(Ω;Rd)

≤ 2L
(

1 + ‖Y ‖κLpκ(Ω;Rd)

)

.

Further, it holds

P(Ac
δ) = E

[

IAc
δ

]

≤ δαpκE
[

IAc
δ
|Y |pκ

]

≤ δαpκ‖Y ‖pκ
Lpκ(Ω;Rd)

.

To sum up, if we choose ν := α(p − 2)κ, then we obtain αpκ − 2ν
p−2 = ν and,

consequently,
∥

∥ϕ(Y )− ϕ(Y ◦)
∥

∥

2

L2(Ω;Rd)
≤

2

p
(2L)pδα(p−2)κ

(

1 + ‖Y ‖κLpκ(Ω;Rd)

)p

+
(

1−
2

p

)

δα(p−2)κ‖Y ‖pκ
Lpκ(Ω;Rd)

.

This completes the proof. �

Theorem 6.6. Let f and gr, r = 1, . . . ,m, satisfy Assumption 2.1 with L ∈ (0,∞)

and q ∈ (1,∞). Let h ∈ (0, 1] be arbitrary. If the exact solution X to (2) satisfies

supτ∈[0,T ] ‖X(τ)‖L6q−4(Ω;Rd) < ∞, then the projected Euler method (ΨPEM, h,X0)

with α = 1
2(q−1) is stochastically B-consistent of order γ = 1

2 .

Proof. Let (t, δ) ∈ T be arbitrary. First we insert (7) and (33) and obtain in the

same way as in the proof of Theorem 5.7

X(t+ δ)−ΨPEM(X(t), t, δ) =

∫ t+δ

t

(

f(τ,X(τ))− f(t,X(t))
)

dτ

+X(t) + δf(t,X(t))−X◦(t)− δf(t,X◦(t))

+

m
∑

r=1

∫ t+δ

t

(

gr(τ,X(τ)) − gr(t,X(t))
)

dW r(τ)

+

m
∑

r=1

(

gr(t,X(t))− gr(t,X◦(t))
)

∆δW
r(t),

where as before X◦(t) = min(1, δ−α|X(t)|−1)X(t). In order to show (15) we there-

fore have to estimate
∥

∥E
[

X(t+ δ)−ΨPEM(X(t), t, δ)|Ft

]
∥

∥

L2(Ω;Rd)

≤

∫ t+δ

t

∥

∥E
[

f(τ,X(τ))− f(t,X(t))|Ft

]∥

∥

L2(Ω;Rd)
dτ

+
∥

∥X(t)−X◦(t)
∥

∥

L2(Ω;Rd)
+ δ

∥

∥f(t,X(t))− f(t,X◦(t))
∥

∥

L2(Ω;Rd)
.

(39)

From Lemma 5.5 and the inequality ‖E[Y |Ft]‖L2(Ω;Rd) ≤ ‖Y ‖L2(Ω;Rd) for all Y ∈

L2(Ω;Rd) we infer that
∫ t+δ

t

∥

∥E
[

f(τ,X(τ))− f(t,X(t))|Ft

]
∥

∥

L2(Ω;Rd)
dτ ≤ Cconsδ

3
2



24 W.-J. BEYN, E. ISAAK, AND R. KRUSE

for a constant Ccons depending on L, q, m, and supτ∈[0,T ] ‖X(τ)‖L4q−2(Ω;Rd).

For the proof of (15) it therefore remains to verify that similar estimates hold

true for the second and third term in (39). For this we apply Lemma 6.5 with

ϕ = idRd , κ = 1, and p = 6q − 4. Then we obtain
∥

∥X(t)−X◦(t)
∥

∥

L2(Ω;Rd)
≤ C

(

1 + ‖X(t)‖L6q−4(Ω;Rd)

)3q−2
δ

3
2 ,

since 1
2α(p − 2) = 3

2 . A further application of Lemma 6.5 with ϕ = f(t, ·), κ = q,

and p = 4− 2
q

yields

∥

∥f(t,X(t))− f(t,X◦(t))
∥

∥

L2(Ω;Rd)
≤ C

(

1 + ‖X(t)‖q
L4q−2(Ω;Rd)

)2− 1
q δ

1
2 ,

since in this case 1
2α(p− 2)q = 1

2 . Altogether, this proves (15) with γ = 1
2 .

For the proof of (16) we have to estimate the following three terms
∥

∥

(

id− E[ · |Ft]
)(

X(t+ δ)−ΨPEM(X(t), t, δ)
)∥

∥

L2(Ω;Rd)

≤

∫ t+δ

t

∥

∥

(

id− E[ · |Ft]
)(

f(τ,X(τ))− f(t,X(t))
)
∥

∥

L2(Ω;Rd)
dτ

+
∥

∥

∥

m
∑

r=1

∫ t+δ

t

(

gr(τ,X(τ))− gr(t,X(t))
)

dW r(τ)
∥

∥

∥

L2(Ω;Rd)

+
∥

∥

∥

m
∑

r=1

(

gr(t,X(t))− gr(t,X◦(t))
)

∆δW
r(t)

∥

∥

∥

L2(Ω;Rd)
.

(40)

First, we use the inequality ‖(id − E[ · |Ft])Y ‖L2(Ω;Rd) ≤ ‖Y ‖L2(Ω;Rd) for all Y ∈

L2(Ω;Rd) and then we obtain from Lemma 5.5 that
∫ t+δ

t

∥

∥

(

id− E[ · |Ft]
)(

f(τ,X(τ)) − f(t,X(t))
)∥

∥

L2(Ω;Rd)
dτ ≤ Cconsδ

3
2 .

Next, we directly apply Lemma 5.6 to the second term in (40). This yields

∥

∥

∥

m
∑

r=1

∫ t+δ

t

(

gr(τ,X(τ)) − gr(t,X(t))
)

dW r(τ)
∥

∥

∥

L2(Ω;Rd)
≤ Cconsδ.

Regarding the last term in (40) we obtain from the Itō isometry that

∥

∥

∥

m
∑

r=1

(

gr(t,X(t))− gr(t,X◦(t))
)

∆δW
r(t)

∥

∥

∥

2

L2(Ω;Rd)

= δ

m
∑

r=1

∥

∥gr(t,X(t))− gr(t,X◦(t))
∥

∥

2

L2(Ω;Rd)
.

Similarly as above the estimate is completed by a further application of Lemma 6.5

with ϕ = gr(t, ·), κ = q, and p = 4− 2
q
, which gives

∥

∥gr(t,X(t))− gr(t,X◦(t))
∥

∥

L2(Ω;Rd)
≤ C

(

1 + ‖X(t)‖q
L4q−2(Ω;Rd)

)2− 1
q δ

1
2 .

Thus, as desired it holds

∥

∥

∥

m
∑

r=1

(

gr(t,X(t))− gr(t,X◦(t))
)

∆δW
r(t)

∥

∥

∥

L2(Ω;Rd)
≤ Cconsδ,

for a constant Ccons depending on L, q, m, and supτ∈[0,T ] ‖X(τ)‖L4q−2(Ω;Rd). �

We conclude this section by stating the strong convergence result for the PEM

method, which follows directly from Theorems 6.4 and 6.6 as well as Theorem 3.7.
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Theorem 6.7. Let f and gr, r = 1, . . . ,m, satisfy Assumption 2.1 with L ∈

(0,∞), η ∈ (12 ,∞), and q ∈ (1,∞). Let h ∈ (0, 1]. If the exact solution X to

(2) satisfies supτ∈[0,T ] ‖X(τ)‖L6q−4(Ω;Rd) < ∞, then the projected Euler-Maruyama

method (ΨPEM, h,X0) with α = 1
2(q−1) is strongly convergent of order γ = 1

2 .

7. Numerical experiments

In this section we perform a series of numerical experiments which aim to il-

lustrate the strong convergence results of the previous sections. In particular, we

compute estimates of the strong error of convergence for the numerical discretization

of the stochastic Ginzburg-Landau equation [13, Chap. 4.4] and the 3/2-stochastic

volatility model (see e.g. [3, 6] and [21, Sec. 1]).

First, we consider the stochastic Ginzburg-Landau equation (GLE) given by

dX(t) =
(

−X3(t) + (µ+
1

2
σ2)X(t)

)

dt+ σX(t) dW (t),

X(0) = X0,
(41)

where µ, σ, t ≥ 0. This equation satisfies Assumption 2.1 and condition (8) with

q = 3 since the cubic term in the drift function has a negative sign. As already

noted in [13, Chap. 4.4] the exact solution to (41) is

X(t) = X0 exp(µt+ σW (t))
(

1 + 2X2
0

∫ t

0

exp(2µs+ 2σW (s)) ds
)− 1

2 , t ≥ 0.(42)

Having an explicit expression for the exact solution, explains why the GLE is often

used for numerical experiments in the literature. For instance, we refer to [26],

where similar experiments have been conducted for split-step one-leg theta methods.

t
0 0.2 0.4 0.6 0.8 1

X

0.5

1

1.5

2

2.5

3

exact
SSBE
BEM
PEM
h-α

Figure 1. Single trajectories of each numerical method with step

size h = 2−6 of the stochastic Ginzburg-Landau equation with

parameters µ = 0.5, σ = 1 and X0 = 2. Threshold for the PEM

projection is a shown as a dotted line.
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In our experiments the SODE (41) is discretized by the split-step backward

Euler method, the backward Euler-Maruyama scheme and the projected Euler-

Maruyama method, respectively. Figure 1 shows single trajectories of the exact

solution and the three numerical methods with equidistant step size h = 2−6 and

parameter values µ = 0.5, σ = 1, and X0 = 2. Since Assumption 2.1 is satisfied

with growth rate q = 3, the parameter value α = 1
2(q−1) = 1

4 is used for the PEM

method. The implementation of the two implicit schemes SSBE and BEM employs

Cardano’s method for directly solving the nonlinear equations. Further, for the

simulation of the exact solution it is necessary to approximate the deterministic

integral appearing in (42). This is done by a Riemann sum with step size 2−12.

Regarding the PEM method we are particularly interested in such trajecto-

ries which do not coincide with those generated by the standard Euler-Maruyama

method. This event occurs when the scheme leaves the sphere of radius h−α at

least once and is then drawn back by the projection. More precisely, if it holds true

that

{

i = 1, . . . , N : |XPEM
h (ti)| > h−α

}

6= ∅,(43)

then the PEM method deviates from the standard Euler-Maruyama scheme. In

Figure 1 the trajectory of the PEM method crosses the line with height h−α = 2
3
2

in the fourth step. Thereafter, the scheme seemingly underestimates the exact

solution, although this effect vanishes when time evolves due to the dissipative

nature of equation (41).

Obviously, this behavior is undesirable and the standard Euler-Maruyama method

would have given a better approximation of the exact solution in this case. How-

ever, let us stress that the main purpose of the projection in the PEM method is

to counteract the effect described by Hutzenthaler et al. [11], where the product of

the norm of explosive trajectories by the explicit Euler-Maruyama method times

the probability to observe such explosive trajectories goes to infinity as the step

size goes to zero. Thus, the Euler-Maruyama values have no bounded moments in

the limit h → 0 and, consequently, it is divergent in the mean square sense.

On the other hand, the projection in the PEM method essentially prevents the

numerical methods from leaving the ball with radius h−α. Due to the existence of

higher moments, this also holds true for the exact solution up to a set of very small

probability (c.f. with the proof of Lemma 6.5). Hence, while being possibly large,

the error in such an instance remains essentially bounded and the line of arguments

in [11] leading to the divergence of the standard Euler-Maruyama method does not

apply to the PEM method.

Table 1 and Figure 2 show the estimated strong error of convergence for six

different equidistant step sizes h = 2k−12, k = 1, . . . , 6. For simplicity we only

estimate the error at the final time T = 1, that is

error = (E(|Xh(T )−X(T )|2))
1
2 ,(44)

where Xh(T ) denotes the respective numerical approximations of the exact solution

X(T ). The expected value is estimated by a Monte Carlo simulation based on 106

sample paths. Our experiments indicate that the Monte Carlo error then drops

well below the strong error to be estimated. As before the parameter values are

µ = 0.5, σ = 1, and X0 = 2.



STOCH. C-STAB. AND B-CONS. OF EULER-TYPE SCHEMES 27

10
−4

10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

h

er
ro

r

 

 
SSBE
BEM
PEM
Order line 1/2

Figure 2. Strong convergence errors for the approximation of the

stochastic Ginzburg-Landau equation (41) with parameters µ =

0.5, σ = 1, and X0 = 2 for .

Table 1. Estimated errors and EOCs for the approximations of (41)

SSBE BEM PEM

h error EOC error EOC error EOC #-Proj.

2−6 0.04637 0.04106 0.04553 33906

2−7 0.03013 0.62 0.02808 0.55 0.02945 0.63 2157

2−8 0.02029 0.57 0.01951 0.53 0.02002 0.56 26

2−9 0.01396 0.54 0.01365 0.52 0.01384 0.53 0

2−10 0.00975 0.52 0.00960 0.51 0.00968 0.52 0

2−11 0.00683 0.51 0.00678 0.50 0.00681 0.51 0

In Figure 2 one clearly observes strong order γ = 1
2 for all three methods. Fur-

ther, no numerical method has a significant advantage over one of the others. Ta-

ble 1 also contains the estimates of the errors and the corresponding experimental

order of convergence defined by

EOC =
log(error(hi))− log(error(hi−1))

log(hi)− log(hi−1)
, i = 2, . . . , k.

For each method we also computed an average of the experimental order of con-

vergence by determining the best fitting line in a least-squares sense for the loga-

rithmically scaled errors. The slopes of these lines are 0.55, 0.52, and 0.54 for the

SSBE, BEM, and PEM method, respectively.

Finally, the last column in Table 1 contains the number of Monte Carlo samples

for which the trajectory of the PEM method leaves the sphere of radius h−α, that
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Table 2. Estimated errors and EOCs for the approximation of (45)

SSBE BEM PEM

h error EOC error EOC error EOC #-Proj.

2−6 0.42856 0.28267 0.74770 139890

2−7 0.22499 0.93 0.18973 0.58 0.25858 1.53 22338

2−8 0.14359 0.65 0.13167 0.53 0.14208 0.86 2707

2−9 0.09603 0.58 0.09119 0.53 0.09484 0.58 294

2−10 0.06585 0.54 0.06371 0.52 0.06516 0.54 24

2−11 0.04524 0.54 0.04454 0.52 0.04508 0.53 0

is the event described in (43) has occurred. Relating this to the total number of

Monte Carlo samples we see that approximately 3.3 percent of the PEM trajectories

with step size h = 2−6 do not coincide with the trajectories of the standard Euler-

Maruyama method. However, as the step size gets smaller the number of those

samples drops quickly.

Note that we do not know if those excursions from the sphere of radius h−α

are caused by the explosive behavior of the standard Euler-Maruyama method

described in [11] or if it is due to an intrinsic feature of the exact solution. In the

latter case the projection may cause more harm than good. But in both cases a

good advice is to choose a smaller step size if the relative frequency to observe the

event (43) is too high.

This becomes even more evident in our next example, which consists of the

following nonlinear SODE

dX(t) = λX(t)(µ− |X(t)|) dt+ σ|X(t)|
3
2 dW (t),

X(0) = X0,
(45)

where λ, µ, σ, X0 ≥ 0. This equation incorporates a super-linearly growing dif-

fusion coefficient function and is used as a stochastic volatility model (SVM) in

mathematical finance [3]. It has also been considered in [21] for a tamed Euler

method.

The mappings f, g : R → R defined by f(x) := λx(µ − |x|) and g(x) := σ|x|
3
2

are continuous for all x ∈ R and satisfy the global monotonicity condition in As-

sumption 2.1 with η ≤ λ+σ2

σ2 and L = λµ. Moreover, the coercivity condition (8) is

fulfilled for every p ≤ 2λ+σ2

σ2 . We refer to the Appendix in [21] for calculations of

the constants η, p, and L.

For the numerical experiments the parameter values are λ = 3.5, µ = 3, σ = 1,

and the initial value is X0 = 5. Hence, the global monotonicity condition (3) is satis-

fied with 1 < η < 4.5. Further, the exact solution fulfills supt∈[0,T ] ‖X(t)‖Lp(Ω;Rd) <

∞ for every p ≤ 8.

Since there is no explicit expression available, we replace the exact solution in

(44) by a numerical reference approximation with a very fine step size href = 2−16.

The implicit schemes are again implemented by solving the nonlinear equation in

each time step explicitly. This time we take the parameter value α = 1
2 for the

PEM method. As above our estimate of the errors are based on a Monte Carlo

simulation with 106 sample paths.
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Figure 3. Strong convergence errors for the approximation of the

3/2-volatility model (45) with parameters λ = 3.5, µ = 3, σ = 1

and X0 = 5.

Figure 3 shows the strong convergence errors of the three methods with six

different step sizes h = 2k∆t, k = 5, . . . , 10. The results are well in line with the

predicted strong order γ = 1
2 for all schemes provided that the step size is sufficiently

small. In that case, there is again no significant difference in the behavior of the

three schemes. For larger step sizes, however, the BEM methods outperforms the

SSBE scheme and, on a much larger scale, the PEM method significantly.

This can also been seen from Table 2, which contains the numerical values for

the strong errors shown in Figure 3. The values for the corresponding experimental

order of convergence verify the theoretical results only for small values of h. As

above we also determine an average experimental order of convergence for the three

methods as the slope of the best fitting line in the mean-square sense. The results

for the SSBE, BEM, and PEM method are 0.63, 0.53, and 0.77, respectively.

Note that in the stochastic volatility method the magnitude of the noise term is,

intentionally, much larger than in the Ginzburg-Landau equation while the damping

in the drift term is weaker if X(t) > µ. Thus, the dynamic is more often dominated

by the noise term. It appears that the BEM scheme works best in this situation

as the noise term is always damped by the implicit step. In the SSBE scheme, on

the other hand, the most recent noise increment is undamped which apparently

affects the error negatively if the step size is large. This effect is even worse for the

explicit PEM scheme. In addition, the high noise intensity makes it more likely for

the exact solution to leave the sphere of radius h−α while the PEM method cannot

follow and is pulled back. This coincides with a larger number of trajectories in

which the projection has been applied as can be seen from the values in the last

column of Table 2.

To conclude this section, let us summarize our observations: We have seen in the

numerical experiments that the three schemes perform equally well if the step size
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is small enough. For larger step sizes the implicit schemes turned out to be superior

over the PEM method, especially if the noise term is more likely to dominate the

underlying dynamics. However, by observing the relative frequency of the event (43)

one may have a simple indicator available if the step size of the explicit method

should be further decreased. Since the PEM method is, in general, cheaper to

simulate than the implicit schemes, one might afford this, eventually.
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