Skip to main content
Log in

Adaptive Finite Difference Methods for Nonlinear Elliptic and Parabolic Partial Differential Equations with Free Boundaries

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Monotone finite difference methods provide stable convergent discretizations of a class of degenerate elliptic and parabolic partial differential equations (PDEs). These methods are best suited to regular rectangular grids, which leads to low accuracy near curved boundaries or singularities of solutions. In this article we combine monotone finite difference methods with an adaptive grid refinement technique to produce a PDE discretization and solver which is applied to a broad class of equations, in curved or unbounded domains which include free boundaries. The grid refinement is flexible and adaptive. The discretization is combined with a fast solution method, which incorporates asynchronous time stepping adapted to the spatial scale. The framework is validated on linear problems in curved and unbounded domains. Key applications include the obstacle problem and the one-phase Stefan free boundary problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Benamou, J.-D., Froese, B.D., Oberman, A.M.: Numerical solution of the optimal transportation problem using the Monge–Ampère equation. J. Comput. Phys. 260, 107–126 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayliss, A., Gunzburger, M., Turkel, E.: Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J. Appl. Math. 42(2), 430–451 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brezzi, F., Hager, W.W., Raviart, P.-A.: Error estimates for the finite element solution of variational inequalities. Numer. Math. 28(4), 431–443 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4(3), 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, H., Min, C., Gibou, F.: A numerical scheme for the stefan problem on adaptive cartesian grids with supralinear convergence rate. J. Comput. Phys. 228(16), 5803–5818 (2009)

    Article  MATH  Google Scholar 

  8. De Berg, M., Van Kreveld, M., Overmars, M., Schwarzkopf, O.C.: Computational Geometry. Springer, New York (2000)

    Book  MATH  Google Scholar 

  9. Daskalopoulos, P., Lee, K.-A.: All time smooth solutions of the one-phase stefan problem and the Hele–Shaw flow. Commun. Partial Differ. Equ. 29(1–2), 71–89 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Froese, B.D., Oberman, A.M.: Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation. J. Comput. Phys. 230(3), 818–834 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Froese, B.D., Oberman, A.M.: Convergent filtered schemes for the Monge–Ampère partial differential equation. SIAM J. Numer. Anal. 51(1), 423–444 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gibou, F., Fedkiw, R.: A fourth order accurate discretization for the laplace and heat equations on arbitrary domains, with applications to the stefan problem. J. Comput. Phys. 202(2), 577–601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gräser, C., Kornhuber, R.: Multigrid methods for obstacle problems. J. Comput. Math. 27(1), 1–44 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems, vol. 4. Springer, New York (1984)

    Book  MATH  Google Scholar 

  15. Helgadóttir, Á., Gibou, F.: A Poisson–Boltzmann solver on irregular domains with neumann or robin boundary conditions on non-graded adaptive grid. J. Comput. Phys. 230(10), 3830–3848 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim, I.C.: Uniqueness and existence results on the Hele–Shaw and the stefan problems. Arch. Ratl. Mech. Anal. 168(4), 299–328 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications, vol. 31. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  18. Manfredi, J.J., Oberman, A.M., Svirodov, A.P.: Nonlinear elliptic partial differential equations and p-harmonic functions on graphs. arXiv preprint arXiv:1212.0834 (2012)

  19. Mirzadeh, M., Theillard, M., Gibou, F.: A second-order discretization of the nonlinear Poisson–Boltzmann equation over irregular geometries using non-graded adaptive cartesian grids. J. Comput. Phys. 230(5), 2125–2140 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oberman, A.M.: Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44(2), 879–895 (2006). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam M. Oberman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oberman, A.M., Zwiers, I. Adaptive Finite Difference Methods for Nonlinear Elliptic and Parabolic Partial Differential Equations with Free Boundaries. J Sci Comput 68, 231–251 (2016). https://doi.org/10.1007/s10915-015-0137-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0137-x

Keywords