Skip to main content
Log in

A Numerical Framework for Integrating Deferred Correction Methods to Solve High Order Collocation Formulations of ODEs

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Recent analysis and numerical experiments show that the deferred correction methods are competitive numerical schemes for time dependent differential equations. These methods differ in the mathematical formulations, choices of collocation points, and numerical integration or differentiation strategies. Existing analyses of these methods usually follow traditional ODE theory and study each algorithm’s convergence and stability properties as the step size \(\varDelta t\) varies. In this paper, we study the deferred correction methods from a different perspective by separating two different concepts in the algorithm: (1) the properties of the converged solution to the collocation formulation, and (2) the convergence procedure utilizing the deferred correction schemes to iteratively and efficiently reduce the error in the provisional solution. This new viewpoint allows the construction of a numerical framework to integrate existing techniques, by (1) selecting an appropriate collocation discretization based on the physical properties of the solution to balance the time step size and accuracy of the initial approximate solution; and by (2) applying different deferred correction strategies for reducing different components in the error of the provisional solution. This paper discusses properties of different components in the numerical framework, and presents preliminary results on the effective integration of these components for ODE initial value problems. Our results provide useful guidelines for implementing “optimal” time integration schemes for general time dependent differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ascher, U., Petzold, L.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  2. Atkinson, K.: An Introduction to Numerical Analysis, 2nd edn. Wiley, Hoboken (1989)

    MATH  Google Scholar 

  3. Auzinger, W., Hofstatter, H., Kreuzer, W., Weinmuller, E.: Modified defect correction algorithms for ODEs. Part I: general theory. Numer. Algorithms 36, 135–156 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrett, R., et al.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  5. Barrio, R.: On the a-stability of Runge–Kutta collocation methods based on orthogonal polynomials. SIAM J. Numer. Anal. 36(4), 1291–1303 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Beylkin, G., Sandberg, K.: Ode solvers using band-limited approximations. J. Comput. Phys. 265, 156–171 (2014)

    Article  MathSciNet  Google Scholar 

  7. Brown, P., Hindmarsh, A., Petzold, L.: Using Krylov methods in the solution of large-scale differential-algebraic systems. SIAM J. Sci. Comput. 15, 1467–1488 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  9. Causley, M., Christlieb, A., Ong, B., Van Groningen, L.: Method of lines transpose: an implicit solution to the wave equation. Math. Comput. 83, 2763–2786 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, W., Wang, X., Yu, Y.: Reducing the computational requirements of the differential quadrature method. Numer. Methods Partial Differ. Equ. 12, 565–577 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Christlieb, A., Ong, B., Qiu, J.M.: Integral deferred correction methods constructed with high order Runge–Kutta integrators. Math. Comput. 79(270), 761–783 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Emmett, M., Minion, M.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7(1), 105–132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Glaser, A., Rokhlin, V.: A new class of highly accurate solvers for ordinary differential equations. J. Sci. Comput. 38(3), 368–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gottlieb, D., Orszag, S.: Numerical Analysis of Spectral Methods. SIAM, Philadelphia (1977)

    Book  MATH  Google Scholar 

  17. Greengard, L.: Spectral integration and two-point boundary value problems. SIAM J. Numer. Anal. 28, 1071–1080 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hairer, E., Hairer, M.: Gnicodes—matlab programs for geometric numerical integration. In: Blowey, J., Craig, A., Shardlow, T. (eds.) Frontiers in Numerical Analysis, pp. 199–240. Springer, Berlin (2003)

  20. Hairer, E., Lubich, C., Roche, M.: The Numerical Solution of Differential-Algebraic Systems by Runge–Kutta Methods. Springer, Berlin (1989)

    MATH  Google Scholar 

  21. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  22. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, Berlin (2006)

    MATH  Google Scholar 

  23. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  24. Huang, J., Jia, J., Minion, M.: Accelerating the convergence of spectral deferred correction methods. J. Comput. Phys. 214, 633–656 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Huang, J., Jia, J., Minion, M.: Arbitrary order Krylov deferred correction methods for differential algebraic equations. J. Comput. Phys. 221(2), 739–760 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jia, J., Huang, J.: Krylov deferred correction accelerated method of lines transpose for parabolic problems. J. Comput. Phys. 227(3), 1739–1753 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jia, J., Liu, J.: Stable and spectrally accurate schemes for the Navier–Stokes equations. SIAM J. Sci. Comput. 33(5), 2421–2439 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kelly, C.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)

    Book  Google Scholar 

  29. Kelly, C.: Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  30. Kennedy, C., Carpenter, M.H.: Additive Runge–Kutta schemes for convection–diffusion–reaction equations. Appl. Numer. Math. 44, 139–181 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Knoll, D., Keyes, D.: Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kushnir, D., Rokhlin, V.: A highly accurate solver for stiff ordinary differential equations. SIAM J. Sci. Comput. 34(3), A1296–A1315 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Layton, A.T., Minion, M.L.: Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations. BIT Numer. Math. 45(2), 341–373 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, S., Petzold, L.: Software and algorithms for sensitivity analysis of large-scale differential algebraic systems. J. Comput. Appl. Math. 125(1), 131–145 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lions, J., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDE’s. Comptes Rendus de l’Academie des Sciences Series I Mathematics 332(7), 661–668 (2001)

    MathSciNet  MATH  Google Scholar 

  36. Lu, B., Xiaolin, C., Huang, J., McCammon, A.: Order N algorithm for computation of electrostatic interactions in biomolecular systems. Proc. Nat. Acad. Sci. 103(51), 19314–19319 (2006)

    Article  Google Scholar 

  37. Mazzia, F., et al.: Test set for IVP solvers. https://www.dm.uniba.it/~testset/testsetivpsolvers

  38. Saad, Y., Schultz, M.: GMRES: a generalized minimal residual algorithm for solving non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer, Berlin (1992)

    MATH  Google Scholar 

  40. Trefethen, L.: Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50(1), 67–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of this paper was supported by the National Science Foundation under Grants DMS1217080 and EAR0941235. W. Qu was supported by the scholarship from the China Scholarship Council (CSC) under Grant Number 201306710026 during his visit of the University of North Carolina at Chapel Hill.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingfang Huang.

Appendix

Appendix

Proof of Theorem 3

Assuming p points \(\{ 1/p, 2/p, \dots , (p-1)/p, 1 \}\) are used in the uniform collocation formulation, then \(\tilde{S}\) is a lower triangular matrix and all non-zero entries (including diagonal entries) are 1 / p. Simple calculation shows that \(\tilde{S}^{-1}\) has zero entries everywhere except along the diagonal and subdiagonal, with nonzero entries p on the diagonal and \(-p\) on the subdiagonal,

$$\begin{aligned} \tilde{S}^{-1} = \left[ \begin{array}{llllll} p &{}\quad 0 &{} \quad 0 &{} \quad \cdots &{}\quad 0 &{}\quad 0 \\ -p &{}\quad p &{} \quad 0 &{}\quad \cdots &{} \quad 0 &{}\quad 0 \\ 0 &{}\quad -p &{} \quad p &{} \quad \cdots &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad -p &{}\quad \cdots &{} \quad 0 &{}\quad 0 \\ \cdots &{} \quad \cdots &{}\quad \cdots &{} \quad \cdots &{}\quad \cdots &{}\quad \cdots \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \cdots &{}\quad -p &{}\quad p \end{array} \right] . \end{aligned}$$

Consider the vector \(\mathbf{V}_j = [ (p-1)^j, (p-2)^j, \dots , 2^j, 1^j, 0]^T\) (\(j=1,\dots ,p-1\)) and \(\mathbf{V}_0=[1,1, \ldots , 1,1]^T\). As S integrates polynomials of degree \(\le p-1\) exactly, one can show

$$\begin{aligned} \left( \tilde{S}^{-1} S - I\right) \mathbf{V}_j = \frac{1}{j+1} \sum _{l=0}^{j-1} \left( {\begin{array}{c}l\\ j+1\end{array}}\right) \mathbf{V}_l \quad and \quad \left( \tilde{S}^{-1} S - I\right) \mathbf{V}_0 = \mathbf{0}. \end{aligned}$$

Define \(\mathbf{W}_0=\mathbf{V}_0\). The basis for the Jordan canonical form can be constructed recursively by solving \( (\tilde{S}^{-1} S - I) \mathbf{W}_j = \mathbf{W}_{j-1}\), where \(\mathbf{W}_j\) consists of a linear combination of \(\mathbf{V}_k\), \(k=0, \ldots , j\). \(\square \)

To prove Theorem 4, we start from the following Lemma:

Lemma 1

For the trapezoidal rule preconditioned uniform collocation formulation (InDC-yp-T), the matrix \(S-\tilde{S}\) maps the vector \([ (\frac{j}{p})^k ]_{j=0}^p := [ (\frac{0}{p})^k, (\frac{1}{p})^k, (\frac{2}{p})^k, \dots , (\frac{p-1}{p})^k, 1 ]^T \) (\(k \le p\)) to a linear combination of vectors \([ (\frac{j}{p})^m ]_{j=0}^p\), \(m=0, \dots , k-1\).

Proof

Assume \(p+1\) points \(\{ 0/p, 1/p, 2/p, \dots , (p-1)/p, 1 \}\) are used in the uniform collocation formulation. As the integration matrix S integrates polynomials of degree p or less exactly, we have

$$\begin{aligned} S \left[ \left( \frac{j}{p}\right) ^k \right] _{j=0}^p = \left[ \int _0^{\frac{j}{p}} x^k dx \right] _{j=0}^p = \frac{1}{k+1} \left[ \left( \frac{j}{p}\right) ^{k+1} \right] _{j=0}^p. \end{aligned}$$

Now consider the \(j^{th}\) entry of the vector \(\tilde{S} [ (\frac{j}{p})^k ]_{j=0}^p\) given by

$$\begin{aligned} \tilde{S} \left[ \left( \frac{j}{p}\right) ^k \right] _j= & {} \frac{1}{p} \left( \frac{1}{2} \left( \frac{0}{p}\right) ^k + \sum _{n=1}^{j-1} \left( \frac{n}{p}\right) ^k + \frac{1}{2} \left( \frac{j}{p}\right) ^k \right) =\frac{1}{p^{k+1}}\left( \sum _{n=1}^j n^k - \frac{1}{2} j^k\right) \\= & {} \frac{1}{p^{k+1}}\left( \frac{j^{k+1}}{k+1} + \frac{1}{2} j^k + \text{ lower } \text{ order }\,(<k)\hbox { terms }-\frac{1}{2} j^k\right) . \end{aligned}$$

Therefore, after cancelling the \(j^{k+1}\) and \(j^k\) terms, we have

$$\begin{aligned} (S-\tilde{S})\left[ \left( \frac{j}{p}\right) ^k \right] _{j=0}^p = \sum _{m=0}^{k-1} c_m \left[ \left( \frac{j}{p}\right) ^m \right] _{j=0}^p. \end{aligned}$$

\(\square \)

Proof of Theorem 4

We will Apply Lemma 1 and the Taylor expansion of the initial provisional solution in the trapezoidal rule preconditioned deferred correction iterations for the uniform collocation formulation (InDC-yp-T). From Eq. (17), we see that the correction matrix has the expansion

$$\begin{aligned} C^t_{ns}=(\lambda \varDelta {t})\left( \mathbf S - \tilde{\mathbf{S }}\right) + (\lambda \varDelta {t})^2 \tilde{\mathbf{S }}\left( \mathbf S - \tilde{\mathbf{S }}\right) + (\lambda \varDelta {t})^3 \tilde{\mathbf{S }}^2\left( \mathbf S - \tilde{\mathbf{S }}\right) + \cdots , \end{aligned}$$

and the initial provisional solution b has the expansion of the form (neglecting all \((\varDelta {t})^{p+1}\) and higher order terms)

$$\begin{aligned} b \approx \sum _{m=0}^{p} (\lambda \varDelta {t})^m c_m \left[ \left( \frac{j}{p}\right) ^m \right] . \end{aligned}$$

By induction and Lemma 1, it is straightforward to show that

$$\begin{aligned} \left( C^t_{ns}\right) ^k b \approx (\lambda \varDelta {t})^{2k} \sum _{m=0}^{p} c_{m,k} \left[ \left( \frac{j}{p}\right) ^m \right] , \end{aligned}$$

neglecting \((\varDelta {t})^{p+1}\) and higher order terms. Therefore, after each trapezoidal rule preconditioned SDC iteration for the uniform collocation formation, the order will increase by \((\varDelta {t})^2\), until it reaches \((\varDelta {t})^{p+1}\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, W., Brandon, N., Chen, D. et al. A Numerical Framework for Integrating Deferred Correction Methods to Solve High Order Collocation Formulations of ODEs. J Sci Comput 68, 484–520 (2016). https://doi.org/10.1007/s10915-015-0146-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0146-9

Keywords

Mathematics Subject Classification

Navigation