Skip to main content
Log in

Computation Algorithm for Convex Semi-infinite Program with Second-Order Cones: Special Analyses for Affine and Quadratic Case

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We focus on the convex semi-infinite program with second-order cone constraints (for short, SOCCSIP), which has wide applications such as filter design, robust optimization, and so on. For solving the SOCCSIP, we propose an explicit exchange method, and prove that the algorithm terminates in a finite number of iterations. In the convergence analysis, we do not need to use the special structure of second-order cone (SOC) when the objective or constraint function is strictly convex. However, if both of them are non-strictly convex and constraint function is affine or quadratic, then we have to utilize the SOC complementarity conditions and the spectral factorization techniques associated with Euclidean Jordan algebra. We also show that the obtained output is an approximate optimum of SOCCSIP. We report some numerical results involving the application to the robust optimization in the classical convex semi-infinite program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Function f and cone \(\mathcal{K}\) are convex. Moreover, the KKT condisions of the problem “min f(x) s.t. \(x\in \mathcal{K}\)” can be written as \(x\in \mathcal{K}\), \(\nabla f(x)\in \mathcal{K}\) and \(x^{\top }\nabla f(x)=0\).

  2. Assumption A (iii) and Proposition 4.1 yield \(0<-c({\overline{x}},\overline{s}_{\max })\le c({x^k},s^k)-c({\overline{x}},s^k)\le \nabla _{x}c({x^k},s^k)^\top ({x^k}-{\overline{x}})\le \Vert \nabla _{x}c({x^k},s^k)\Vert (M+\Vert {\overline{x}}\Vert )\), where \(\overline{s}_{\max }:={\mathrm{argmax}}_{s\in \Omega }c({\overline{x}},s)\). Therefore, we can choose \(\gamma :=-c({\overline{x}},\overline{s}_{\max })/(M+\Vert {\overline{x}}\Vert )>0\).

  3. When \(\mathcal{I}^{k}_2=\emptyset \), we immediately obtain the desired result \(\mathcal{I}^{k}_2\subseteq \mathcal{I}^{k+1}_2\).

  4. When \(\Omega =[l_s,u_s]\subset \mathbb {R}\), we test the 101 points \(l_s+i(u_s-l_s)/100\) with \(i=0,1,\ldots ,100\). When \(\Omega =[l_s,u_s]^2\subset \mathbb {R}^2\), we test the 121 points \((l_s+i(u_s-l_s)/10,\,l_s+j(u_s-l_s)/10)^\top \) with \(i=0,1,\ldots ,10\) and \(j=0,1,\ldots ,10\).

  5. For Problem 7, the final active index is located in the interior of \(\Omega \), and for other six problems (5, 6, 8, 10, 11, 12), they are located on the non-vertex boundary.

  6. For example, when \(\mathcal{K}=(\mathcal{K}^{\ell })^{m}\), we have m subvectors \(x^*_1,\ldots ,x^*_{m}\in \mathbb {R}^{\ell }\) for the optimum \(x^*\). Therefore, if the obtained solutions of the 100 problems are \(x^{*,1},x^{*,2},\ldots ,x^{*,100}\), then we have \(\lambda _i^{\max }:=\max \big \{\lambda _i(x^{*,p}_j)\bigm |(j,p)\in \{1,2,\ldots ,m\}\times \{1,2,\ldots ,100\}\big \}\) and \(\lambda _i^{\min }:=\min \big \{\lambda _i(x^{*,p}_j)\bigm |(j,p)\in \{1,2,\ldots ,m\}\times \{1,2,\ldots ,100\}\big \}\) for each \(i=1,2\).

References

  1. Auslender, A., Goberna, M.A., López, M.A.: Penalty and smoothing methods for convex semi-infinite programming. Math. Oper. Res. 34, 303–319 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  3. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res 23, 769–805 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25, 1–13 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)

    MATH  Google Scholar 

  6. Bonnans, J.F., Ramírez, H.: Perturbation analysis of second-order cone programming problems. Math. Progr. 104, 205–227 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnans, J.F., Shapiro, A.: Perturbation analysis of optimization problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  8. Chen, X.D., Sun, D., Sun, J.: Complementarity functions and numerical experiments for second-order-cone complementarity problems. Comput. Optim. Appl. 25, 39–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Clarendon Press, New York (1994)

    MATH  Google Scholar 

  10. Fukushima, M., Luo, Z.-Q., Tseng, P.: Smoothing functions for second-order cone complementarity problems. SIAM J. Optim. 12, 436–460 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goberna, M.A., López, M.A.: Linear semi-infinite programming: an updated survey. Eur. J. Oper. Res. 143, 390–405 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gonzaga, C., Polak, E., Trahan, R.: An improved algorithm for optimization problems with functional inequality constraints. IEEE Trans. Autom. Control 25, 49–54 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hayashi, S., Wu, S.-Y.: An explicit algorithm for linear semi-infinite programming problem with second-order cone constraints. SIAM J. Optim. 20, 1527–1546 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hayashi, S., Yamaguchi, T., Yamashita, N., Fukushima, M.: A matrix splitting method for symmetric affine second-order cone complementarity problems. J. Comput. Appl. Math. 175, 335–353 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15, 593–615 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hettich, R., Kortanek, K.O.: Semi-infinite programming: theory, methods, and applications. SIAM Rev. 35, 380–429 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kato, H., Fukushima, M.: An SQP-type algorithm for nonlinear second-order cone programs. Optim. Lett. 1, 129–144 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kortanek, K., No, H.: A central cutting plane algorithm for convex semi-infinite programming problems. SIAM J. Optim 3, 901–918 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lai, H.C., Wu, S.-Y.: On linear semi-infinite programming problems: an algorithm. Numer. Funct. Anal. Optim. 13, 287–304 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, D., Qi, L., Tam, J., Wu, S.-Y.: A smoothing newton method for semi-infinite programming. J. Glob. Optim. 30, 169–194 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, C.-J., Fang, S.-C., Wu, S.-Y.: An unconstrained convex programming approach to linear semi-infinite programming. SIAM J. Optim. 8, 443–456 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284, 193–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. López, M., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180, 491–518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Narushima, Y., Sagara, N., Ogasawara, H.: A smoothing Newton method with Fischer-Burmeister function for second-order cone complementarity problems. J. Optim. Theory Appl. 149, 79–101 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Okuno, T., Hayashi, S., Fukushima, M.: A regularized explicit exchange method for semi-infinite programs with an infinite number of conic constraints. SIAM J. Optim. 22, 1009–1028 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Özmen, A., Weber, G.-W., Batmazb, I., Kropat, E.: RCMARS: robustification of CMARS with different scenarios under polyhedral uncertainty set. Commun. Nonlinear Sci. Numer. Simul. 16, 4780–4787 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Qi, L., Wu, S.-Y., Zhou, G.: Semismooth newton for solving semi-infinite programming problems. J. Glob. Optim. 27, 215–232 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reemtsen, R., Görner, S.: Numerical methods for semi-infinite programming: a survey. In: Reemtsen, R., Rückmann, J. (eds.) Semi-Infinite Programming, pp. 195–275. Kluwer Academic Publishers, Boston (1998)

    Chapter  Google Scholar 

  29. Reemtsen, R., Rückmann, J.: Semi-Infinite Programming. Kluwer Academic Publishers, Boston (1998)

    Book  MATH  Google Scholar 

  30. Stein, O., Still, G.: Solving semi-infinite optimization problems with interior point techniques. SIAM J. Control Optim. 42, 769–788 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Still, G.: Discretization in semi-infinite programming: the rate of convergence. Math. Progr. 91, 53–69 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Wu, S.-Y., Fang, S.-C.: Solving convex programs with infinitely linear constraints by a relaxed cutting plane method. Comput. Math. Appl. 38, 23–33 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, S.-Y., Li, D.H., Qi, L., Zhou, G.: An iterative method for solving KKT system of the semi-infinite programming. Optim. Methods Softw. 20, 629–643 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yamashita, H., Yabe, H.: A primal-dual interior point method for nonlinear optimization over second-order cones. Optim. Methods Softw. 24, 407–426 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yuan, Y.X.: Recent advances in numerical methods for nonlinear equations and nonlinear least squares. Numer. Algebra Control Optim. 1, 15–34 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yuan, Y.X.: A trust region algorithm for Nash equilibrium problems. Pac. J. Optim. 7, 125–138 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Zhang, L., Wu, S.-Y., López, M.A.: A new exchange method for convex semi-infinite programming. SIAM J. Optim. 20, 2959–2977 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Yi Wu.

Additional information

This research was supported in part by JSPS KAKENHI Grant Number 26330022, and by National Center for Theoretical Sciences, Taiwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, S., Wu, SY. & Zhang, L. Computation Algorithm for Convex Semi-infinite Program with Second-Order Cones: Special Analyses for Affine and Quadratic Case. J Sci Comput 68, 573–595 (2016). https://doi.org/10.1007/s10915-015-0149-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0149-6

Keywords

Mathematics Subject Classification

Navigation