Skip to main content
Log in

Computing Extreme Eigenvalues of Large Scale Hankel Tensors

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Large scale tensors, including large scale Hankel tensors, have many applications in science and engineering. In this paper, we propose an inexact curvilinear search optimization method to compute Z- and H-eigenvalues of mth order n dimensional Hankel tensors, where n is large. Owing to the fast Fourier transform, the computational cost of each iteration of the new method is about \(\mathcal {O}(mn\log (mn))\). Using the Cayley transform, we obtain an effective curvilinear search scheme. Then, we show that every limiting point of iterates generated by the new algorithm is an eigen-pair of Hankel tensors. Without the assumption of a second-order sufficient condition, we analyze the linear convergence rate of iterate sequence by the Kurdyka–Łojasiewicz property. Finally, numerical experiments for Hankel tensors, whose dimension may up to one million, are reported to show the efficiency of the proposed curvilinear search method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. See “http://en.wikipedia.org/wiki/Cayley_transform”.

References

  1. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. Ser. B 116, 5–16 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35, 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bader, B., Kolda, T.: Efficient MATLAB computations with sparse and factored tensors. SIAM J. Sci. Comput. 30, 205–231 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyer, R., De Lathauwer, L., Abed-Meraim, K.: Higher order tensor-based method for delayed exponential fitting. IEEE Trans. Signal Process. 55, 2795–2809 (2007)

    Article  MathSciNet  Google Scholar 

  7. Chang, K.C., Pearson, K., Zhang, T.: On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl. 350, 416–422 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, L., Han, L., Zhou, L.: Computing tensor eigenvalues via homotopy methods, (2015). arXiv:1501.04201v3

  9. Chen, Y., Dai, Y., Han, D., Sun, W.: Positive semidefinite generalized diffusion tensor imaging via quadratic semidefinite programming. SIAM J. Imaging Sci. 6, 1531–1552 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Y., Qi, L., Wang, Q.: Positive semi-definiteness and sum-of-squares property of fourth order four dimensional Hankel tensors, (2015). arXiv:1502.04566v8

  11. Choi, J.H., Vishwanathan, S.V.N.: DFacTo: distributed factorization of tensors, (2014). arXiv:1406.4519v1

  12. Cichocki, A., Phan, A.-H.: Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Trans. Fund. Electron. E92–A, 708–721 (2009)

    Article  Google Scholar 

  13. Cooper, J., Dutle, A.: Spectra of uniform hypergraphs. Linear Algebra Appl. 436, 3268–3292 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cui, C., Dai, Y., Nie, J.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35, 1582–1601 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dai, Y.: A positive BB-like stepsize and an extension for symmetric linear systems, In: Workshop on Optimization for Modern Computation, Beijing, China, (2014), http://bicmr.pku.edu.cn/conference/opt-2014/slides/Yuhong-Dai

  16. de Almeida, A.L.F., Kibangou, A.Y.: Distributed large-scale tensor decomposition, In: IEEE International Conference on Acoustics, Speech and Siganl Processing (ICASSP) (2014) 26–30

  17. De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-\(1\) and rank-\((R_1, R_2,\ldots, R_N)\) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ding, W., Qi, L., Wei, Y.: Fast Hankel tensor-vector product and its application to exponential data fitting. Numer. Linear Algebra Appl. 22, 814–832 (2015)

    Article  MathSciNet  Google Scholar 

  19. Ding, W., Wei, Y.: Generalized tensor eigenvalue problems. SIAM J. Matrix Anal. Appl. 36, 1073–1099 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Friedland, S., Nocedal, J., Overton, M.L.: The formulation and analysis of numerical methods for inverse eigenvalue problems. SIAM J. Numer. Anal. 24, 634–667 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goldfarb, D., Wen, Z., Yin, W.: A curvilinear search method for the \(p\)-harmonic flow on spheres. SIAM J. Imaging Sci. 2, 84–109 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Baltimore (2013). ISBN 978-1-4214-0794-4

    MATH  Google Scholar 

  23. Han, L.: An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors. Numer. Algebra Control Optim. 3, 583–599 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hao, C., Cui, C., Dai, Y.: A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors. Numer. Linear Algebra Appl. 22, 283–298 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hao, C., Cui, C., Dai, Y.: A feasible trust-region method for calculating extreme Z-eigenvalues of symmetric tensors, Pacific J. Optim. 11, 291–307 (2015)

  26. Hillar, C.J. , Lim, L.-H.: Most tensor problems are NP-hard, J. ACM 60 (2013) article 45:1–39

  27. Hu, S., Huang, Z., Qi, L.: Finding the extreme Z-eigenvalues of tensors via a sequential SDPs method. Numer. Linear Algebra Appl. 20, 972–984 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kang, U., Papalexakis, E., Harpale, A., Faloutsos, C.: GigaTensor: scaling tensor analysis up by 100 times—algorithms and discoveries, In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 316–324 (2012)

  29. Kofidis, E., Regalia, P.A.: On the best rank-\(1\) approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32, 1095–1124 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kolda, T.G., Mayo, J.R.: An adaptive shifted power method for computing generalized tensor eigenpairs. SIAM J. Matrix Anal. Appl. 35, 1563–1581 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lim, L.-H.: Singular values and eigenvalues of tensors: a variational approach, In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’05), 1: 129–132 (2005)

  33. Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels, Les Équations aux Dérivées Partielles, Éditions du centre National de la Recherche Scientifique, Paris, 87–89 (1963)

  34. Luque, J.-G., Thibon, J.-Y.: Hankel hyperdeterminants and Selberg integrals. J. Phys. A 36, 5267–5292 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rating dimensions with review text, In: Proceeding of the 7th ACM Conference on Recommender Systems, 165–172 (2013)

  36. Ni, G., Qi, L., Bai, M.: Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J. Matrix Anal. Appl. 35, 73–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ni, Q., Qi, L., Wang, F.: An eigenvalue method for testing positive definiteness of a multivariate form. IEEE Trans. Automat. Control 53, 1096–1107 (2008)

    Article  MathSciNet  Google Scholar 

  38. Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35, 1155–1179 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Oropeza, V., Sacchi, M.: Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics 76, V25–V32 (2011)

    Article  Google Scholar 

  40. Papy, J.M., De Lathauwer, L., Van Huffel, S.: Exponential data fitting using multilinear algebra: the single-channel and multi-channel case. Numer. Linear Algebra Appl. 12, 809–826 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Papy, J.M., De Lathauwer, L., Van Huffel, S.: Exponential data fitting using multilinear algebra: the decimative case. J. Chemom. 23, 341–351 (2009)

    Article  Google Scholar 

  42. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. Qi, L.: Hankel tensors: associated Hankel matrices and Vandermonde decomposition. Commun. Math. Sci. 13, 113–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. Ser. A 118, 301–316 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Qi, L., Yu, G., Xu, Y.: Nonnegative diffusion orientation distribution function. J. Math. Imaging Vis. 45, 103–113 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schatz, M.D., Low, T.-M., Van De Geijn, R.A., Kolda, T.G.: Exploiting symmetry in tensors for high performance. SIAM J. Sci. Comput. 36, C453–C479 (2014)

    Article  MATH  Google Scholar 

  47. Schultz, T., Seidel, H.-P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Gr. 14, 1635–1642 (2008)

    Article  Google Scholar 

  48. Smith, R.S.: Frequency domain subspace identification using nuclear norm minimization and Hankel matrix realizations. IEEE Trans. Automat. Control 59, 2886–2896 (2014)

    Article  MathSciNet  Google Scholar 

  49. Song, Y., Qi, L.: Infinite and finite dimensional Hilbert tensors. Linear Algebra Appl. 451, 1–14 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Trickett, S., Burroughs, L., Milton, A.: Interpolating using Hankel tensor completion, In: SEG Annual Meeting, 3634–3638 (2013)

  51. Van Huffel, S.: Enhanced resolution based on minimum variance estimation and exponential data modeling. Signal Process. 33, 333–355 (1993)

    Article  Google Scholar 

  52. Van Huffel, S., Chen, H., Decanniere, C., Van Hecke, P.: Algorithm for time-domain NMR data fitting based on total least squares. J. Magn. Reson. Ser. A 110, 228–237 (1994)

    Article  Google Scholar 

  53. Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. Ser. A 142, 397–434 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  54. Xu, C.: Hankel tensors, Vandermonde tensors and their positivities, Linear Algebra Appl., in press (2015)

Download references

Acknowledgments

We thank Mr. Weiyang Ding and Dr. Ziyan Luo for the discussion on numerical experiments, and two referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqun Qi.

Additional information

Yannan Chen: This author’s work was supported by the National Natural Science Foundation of China (Grant No. 11401539) and the Development Foundation for Excellent Youth Scholars of Zhengzhou University (Grant No. 1421315070). Liqun Qi: This author’s work was partially supported by the Hong Kong Research Grant Council (Grant No. PolyU 502111, 501212, 501913 and 15302114).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Qi, L. & Wang, Q. Computing Extreme Eigenvalues of Large Scale Hankel Tensors. J Sci Comput 68, 716–738 (2016). https://doi.org/10.1007/s10915-015-0155-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0155-8

Keywords

Mathematics Subject Classification

Navigation