Abstract
Large scale tensors, including large scale Hankel tensors, have many applications in science and engineering. In this paper, we propose an inexact curvilinear search optimization method to compute Z- and H-eigenvalues of mth order n dimensional Hankel tensors, where n is large. Owing to the fast Fourier transform, the computational cost of each iteration of the new method is about \(\mathcal {O}(mn\log (mn))\). Using the Cayley transform, we obtain an effective curvilinear search scheme. Then, we show that every limiting point of iterates generated by the new algorithm is an eigen-pair of Hankel tensors. Without the assumption of a second-order sufficient condition, we analyze the linear convergence rate of iterate sequence by the Kurdyka–Łojasiewicz property. Finally, numerical experiments for Hankel tensors, whose dimension may up to one million, are reported to show the efficiency of the proposed curvilinear search method.





Similar content being viewed by others
Notes
References
Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. Ser. B 116, 5–16 (2009)
Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35, 438–457 (2010)
Bader, B., Kolda, T.: Efficient MATLAB computations with sparse and factored tensors. SIAM J. Sci. Comput. 30, 205–231 (2007)
Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)
Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2006)
Boyer, R., De Lathauwer, L., Abed-Meraim, K.: Higher order tensor-based method for delayed exponential fitting. IEEE Trans. Signal Process. 55, 2795–2809 (2007)
Chang, K.C., Pearson, K., Zhang, T.: On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl. 350, 416–422 (2009)
Chen, L., Han, L., Zhou, L.: Computing tensor eigenvalues via homotopy methods, (2015). arXiv:1501.04201v3
Chen, Y., Dai, Y., Han, D., Sun, W.: Positive semidefinite generalized diffusion tensor imaging via quadratic semidefinite programming. SIAM J. Imaging Sci. 6, 1531–1552 (2013)
Chen, Y., Qi, L., Wang, Q.: Positive semi-definiteness and sum-of-squares property of fourth order four dimensional Hankel tensors, (2015). arXiv:1502.04566v8
Choi, J.H., Vishwanathan, S.V.N.: DFacTo: distributed factorization of tensors, (2014). arXiv:1406.4519v1
Cichocki, A., Phan, A.-H.: Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Trans. Fund. Electron. E92–A, 708–721 (2009)
Cooper, J., Dutle, A.: Spectra of uniform hypergraphs. Linear Algebra Appl. 436, 3268–3292 (2012)
Cui, C., Dai, Y., Nie, J.: All real eigenvalues of symmetric tensors. SIAM J. Matrix Anal. Appl. 35, 1582–1601 (2014)
Dai, Y.: A positive BB-like stepsize and an extension for symmetric linear systems, In: Workshop on Optimization for Modern Computation, Beijing, China, (2014), http://bicmr.pku.edu.cn/conference/opt-2014/slides/Yuhong-Dai
de Almeida, A.L.F., Kibangou, A.Y.: Distributed large-scale tensor decomposition, In: IEEE International Conference on Acoustics, Speech and Siganl Processing (ICASSP) (2014) 26–30
De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-\(1\) and rank-\((R_1, R_2,\ldots, R_N)\) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)
Ding, W., Qi, L., Wei, Y.: Fast Hankel tensor-vector product and its application to exponential data fitting. Numer. Linear Algebra Appl. 22, 814–832 (2015)
Ding, W., Wei, Y.: Generalized tensor eigenvalue problems. SIAM J. Matrix Anal. Appl. 36, 1073–1099 (2015)
Friedland, S., Nocedal, J., Overton, M.L.: The formulation and analysis of numerical methods for inverse eigenvalue problems. SIAM J. Numer. Anal. 24, 634–667 (1987)
Goldfarb, D., Wen, Z., Yin, W.: A curvilinear search method for the \(p\)-harmonic flow on spheres. SIAM J. Imaging Sci. 2, 84–109 (2009)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hopkins University Press, Baltimore (2013). ISBN 978-1-4214-0794-4
Han, L.: An unconstrained optimization approach for finding real eigenvalues of even order symmetric tensors. Numer. Algebra Control Optim. 3, 583–599 (2013)
Hao, C., Cui, C., Dai, Y.: A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensors. Numer. Linear Algebra Appl. 22, 283–298 (2015)
Hao, C., Cui, C., Dai, Y.: A feasible trust-region method for calculating extreme Z-eigenvalues of symmetric tensors, Pacific J. Optim. 11, 291–307 (2015)
Hillar, C.J. , Lim, L.-H.: Most tensor problems are NP-hard, J. ACM 60 (2013) article 45:1–39
Hu, S., Huang, Z., Qi, L.: Finding the extreme Z-eigenvalues of tensors via a sequential SDPs method. Numer. Linear Algebra Appl. 20, 972–984 (2013)
Kang, U., Papalexakis, E., Harpale, A., Faloutsos, C.: GigaTensor: scaling tensor analysis up by 100 times—algorithms and discoveries, In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 316–324 (2012)
Kofidis, E., Regalia, P.A.: On the best rank-\(1\) approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)
Kolda, T.G., Mayo, J.R.: Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32, 1095–1124 (2011)
Kolda, T.G., Mayo, J.R.: An adaptive shifted power method for computing generalized tensor eigenpairs. SIAM J. Matrix Anal. Appl. 35, 1563–1581 (2014)
Lim, L.-H.: Singular values and eigenvalues of tensors: a variational approach, In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’05), 1: 129–132 (2005)
Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels, Les Équations aux Dérivées Partielles, Éditions du centre National de la Recherche Scientifique, Paris, 87–89 (1963)
Luque, J.-G., Thibon, J.-Y.: Hankel hyperdeterminants and Selberg integrals. J. Phys. A 36, 5267–5292 (2003)
McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rating dimensions with review text, In: Proceeding of the 7th ACM Conference on Recommender Systems, 165–172 (2013)
Ni, G., Qi, L., Bai, M.: Geometric measure of entanglement and U-eigenvalues of tensors. SIAM J. Matrix Anal. Appl. 35, 73–87 (2014)
Ni, Q., Qi, L., Wang, F.: An eigenvalue method for testing positive definiteness of a multivariate form. IEEE Trans. Automat. Control 53, 1096–1107 (2008)
Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix Anal. Appl. 35, 1155–1179 (2014)
Oropeza, V., Sacchi, M.: Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics 76, V25–V32 (2011)
Papy, J.M., De Lathauwer, L., Van Huffel, S.: Exponential data fitting using multilinear algebra: the single-channel and multi-channel case. Numer. Linear Algebra Appl. 12, 809–826 (2005)
Papy, J.M., De Lathauwer, L., Van Huffel, S.: Exponential data fitting using multilinear algebra: the decimative case. J. Chemom. 23, 341–351 (2009)
Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
Qi, L.: Hankel tensors: associated Hankel matrices and Vandermonde decomposition. Commun. Math. Sci. 13, 113–125 (2015)
Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. Ser. A 118, 301–316 (2009)
Qi, L., Yu, G., Xu, Y.: Nonnegative diffusion orientation distribution function. J. Math. Imaging Vis. 45, 103–113 (2013)
Schatz, M.D., Low, T.-M., Van De Geijn, R.A., Kolda, T.G.: Exploiting symmetry in tensors for high performance. SIAM J. Sci. Comput. 36, C453–C479 (2014)
Schultz, T., Seidel, H.-P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Gr. 14, 1635–1642 (2008)
Smith, R.S.: Frequency domain subspace identification using nuclear norm minimization and Hankel matrix realizations. IEEE Trans. Automat. Control 59, 2886–2896 (2014)
Song, Y., Qi, L.: Infinite and finite dimensional Hilbert tensors. Linear Algebra Appl. 451, 1–14 (2014)
Trickett, S., Burroughs, L., Milton, A.: Interpolating using Hankel tensor completion, In: SEG Annual Meeting, 3634–3638 (2013)
Van Huffel, S.: Enhanced resolution based on minimum variance estimation and exponential data modeling. Signal Process. 33, 333–355 (1993)
Van Huffel, S., Chen, H., Decanniere, C., Van Hecke, P.: Algorithm for time-domain NMR data fitting based on total least squares. J. Magn. Reson. Ser. A 110, 228–237 (1994)
Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. Ser. A 142, 397–434 (2013)
Xu, C.: Hankel tensors, Vandermonde tensors and their positivities, Linear Algebra Appl., in press (2015)
Acknowledgments
We thank Mr. Weiyang Ding and Dr. Ziyan Luo for the discussion on numerical experiments, and two referees for their valuable comments.
Author information
Authors and Affiliations
Corresponding author
Additional information
Yannan Chen: This author’s work was supported by the National Natural Science Foundation of China (Grant No. 11401539) and the Development Foundation for Excellent Youth Scholars of Zhengzhou University (Grant No. 1421315070). Liqun Qi: This author’s work was partially supported by the Hong Kong Research Grant Council (Grant No. PolyU 502111, 501212, 501913 and 15302114).
Rights and permissions
About this article
Cite this article
Chen, Y., Qi, L. & Wang, Q. Computing Extreme Eigenvalues of Large Scale Hankel Tensors. J Sci Comput 68, 716–738 (2016). https://doi.org/10.1007/s10915-015-0155-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-015-0155-8
Keywords
- Cayley transform
- Curvilinear search
- Extreme eigenvalue
- Fast Fourier transform
- Hankel tensor
- Kurdyka–Łojasiewicz property
- Large scale tensor