Skip to main content
Log in

The Inverse Power Method for the \(p(x)\)-Laplacian Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present an inverse power method for the computation of the first homogeneous eigenpair of the \(p(x)\)-Laplacian problem. The operators are discretized by the finite element method. The inner minimization problems are solved by a globally convergent inexact Newton method. Numerical comparisons are made, in one- and two-dimensional domains, with other results present in literature for the constant case \(p(x)\equiv p\) and with other minimization techniques (namely, the nonlinear conjugate gradient) for the \(p(x)\) variable case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acerbi, E., Mingione, G.: Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156(2), 121–140 (2001)

    Article  MATH  Google Scholar 

  2. Acerbi, E., Mingione, G.: Gradient estimates for the \(p(x)\)-Laplacean system. J. Reine Angew. Math. 584, 117–148 (2005)

    Article  MATH  Google Scholar 

  3. Akagi, G., Matsuura, K.: Nonlinear diffusion equations driven by the \(p(\cdot )\)-Laplacian. Nonlinear Differ. Equ. Appl. 20, 37–64 (2013)

    Article  MATH  Google Scholar 

  4. Astarita, G., Marrucci, G.: Principles of non-Newtonian Fluid Mechanics. McGraw-Hill, New York (1974)

    Google Scholar 

  5. Atkinson, C., Champion, C.R.: Some boundary value problems for the equation \(\nabla \cdot (|\nabla \varphi |^{N})\). Q. J. Mech. Appl. Math. 37, 401–419 (1984)

    Article  MATH  Google Scholar 

  6. Bellomi, M., Caliari, M., Squassina, M.: Computing the first eigenpar for problems with variable exponents. J. Fixed Point Theory Appl. 13(2), 561–570 (2013)

    Article  MATH  Google Scholar 

  7. Biezuner, R.J., Ercole, G., Martins, E.M.: Computing the first eigenvalue of the \(p\)-Laplacian via the inverse power method. J. Funct. Anal. 257, 243–270 (2009)

    Article  MATH  Google Scholar 

  8. Biezuner, R.J., Ercole, G., Martins, E.M.: Computing the \(\sin _p\) function via the inverse power method. Comput. Methods Appl. Math. 11(2), 129–140 (2011)

    Article  MATH  Google Scholar 

  9. Biezuner, R.J., Brown, J., Ercole, G., Martins, E.M.: Computing the first eigenpair of the \(p\)-Laplacian via inverse iteration of sublinear supersolutions. J. Sci. Comput. 52(1), 180–201 (2012)

    Article  MATH  Google Scholar 

  10. Bird, R., Armstrong, R., Hassager, O.: Dynamics of Polymeric Liquids, Fluid mechanics, vol. 1, 2nd edn. Wiley, New York (1987)

    Google Scholar 

  11. Bognár, G.: Numerical and analytic investigation of some nonlinear problems in fluid mechanics. In: Computers and Simulation in Modern Science, vol. II, pp. 172–180. World Scientific and Engineering Academy and Society (WSEAS) (2008)

  12. Bognár, G., Rontó, M.: Numerical-analytic investigation of the radially symmetric solutions for some nonlinear PDEs. Comput. Math. Appl. 50, 983–991 (2005)

    Article  MATH  Google Scholar 

  13. Bognár, G., Szabó, T.: Solving nonlinear eigenvalue problems by using \(p\)-version of FEM. Comput. Math. Appl. 46(1), 57–68 (2003)

    Article  MATH  Google Scholar 

  14. Breit, D., Diening, L., Schwarzacher, S.: Finite element methods for the \(p(x)\)-Laplacian (2014). arXiv:1311.5121v2 [math.NA]

  15. Diaz, J.I., de Thelin, F.: On a nonlinear parabolic problem arising in some models related to turbulent flows. SIAM J. Math. Anal. 5(4), 1085–1111 (1994)

    Article  Google Scholar 

  16. Diaz, J.I., Hernandez, J.: On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in climatology. J. Math. Anal. Appl. 216, 593–613 (1997)

    Article  MATH  Google Scholar 

  17. Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Berlin (2011)

    Book  Google Scholar 

  18. Fan, X., Zhang, Q., Zhao, D.: Eigenvalues of \(p(x)\)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302(2), 306–317 (2005)

    Article  MATH  Google Scholar 

  19. Franzina, G., Lindqvist, P.: An eigenvalue problem with variable exponents. Nonlinear Anal. 85, 1–16 (2013)

    Article  MATH  Google Scholar 

  20. Glowinski, R., Rappaz, J.: Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid model in glaciology. Modél. Math. Anal. Numér. 37(1), 175–186 (2003)

    Article  MATH  Google Scholar 

  21. Guan, M., Zheng, L.: The similarity solution to a generalized diffusion equation with convection. Adv. Dyn. Syst. Appl. 1(2), 183–189 (2006)

    MATH  Google Scholar 

  22. Harjulehto, P., Hästö, P., Lê, U.V., Nuortio, M.: Overview of differential equations with non-standard growth. Nonlinear Anal. 72, 4551–4574 (2010)

    Article  MATH  Google Scholar 

  23. Hein, M., Bühler, T.: An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse PCA. In: Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010, Curran Associates Inc, pp. 847–855 (2011)

  24. Kawohl, B.: On a family of torsional creep problems. J. Reine Angew. Math. 410, 1–22 (1990)

    MATH  Google Scholar 

  25. Kawohl, B., Fridman, V.: Isoperimetric estimates for the first eigenvalue of the \(p\)-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carolin 44, 659–667 (2003)

    MATH  Google Scholar 

  26. Kelley, C.T.: Iterative Methods for Optimization, Frontiers in Applied Mathematics, vol. 18. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  27. Mastorakis, N.E., Fathabadi, H.: On the solution of p-Laplacian for non-Newtonian fluid flow. WSEAS Trans. Math. 8(6), 238–245 (2009)

    Google Scholar 

  28. Pélissier, M.C., Reynaud, M.L.: Etude d’un modéle mathématique d’écoulement de glacier. C. R. Acad. Sci. Sér. I Math. 279, 531–534 (1974)

    MATH  Google Scholar 

  29. Philip, J.R.: \({N}\)-diffusion. Aust. J. Phys. 14, 1–13 (1961)

    Article  MATH  Google Scholar 

  30. Showalter, R.E., Walkington, N.J.: Diffusion of fluid in a fissured medium with microstructure. SIAM J. Math. Anal. 22, 1702–1722 (1991)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors cordially thank Dr. Stefan Rainer for the helpful discussions about numerical methods for unconstrained minimization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Caliari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caliari, M., Zuccher, S. The Inverse Power Method for the \(p(x)\)-Laplacian Problem. J Sci Comput 65, 698–714 (2015). https://doi.org/10.1007/s10915-015-9982-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-9982-x

Keywords

Navigation